
A study of Pareto and Two-Phase Local Search
Algorithms for Biobjective Permutation

Flowshop Scheduling

Jérémie Dubois-Lacoste

IRIDIA
Université Libre de Bruxelles
Avenue Franklin Roosevelt 50

CP 194/6
B1050 Bruxelles – Belgium
jeremie.dl@gmail.com

Abstract. In many practical problems, several conflicting criteria exist
for evaluating solutions. In this thesis we study stochastic local search
algorithms for biobjective permutation flow shop scheduling problems.
In particular, we tackle three such problems that arise from considering
all pairwise combinations of the objectives (i) makespan, (ii) the sum
of the completion times of the jobs, and (iii) the weighted (and by ex-
tension, the total) tardiness of all jobs. The algorithms proposed herein
are combinations of two local search methods: the two-phase local search
and Pareto local search. The design of the algorithms is based on a care-
ful experimental analysis of crucial algorithmic components of the two
search methods. The final results show that the newly developed algo-
rithms reach very high performance: The solutions obtained frequently
improve upon the best nondominated solutions previously known, while
requiring shorter computation times.



1 Introduction

Many problems that arise in applications such as manufacturing, telecommuni-
cations, business administration, or bioinformatics are of combinatorial nature.
Combinatorial problems involve finding some type of arrangement, grouping,
partitioning, or subset of a typically finite set of discrete objects. In combina-
torial optimization problems, an objective function value is associated to each
possible candidate solution and the goal is to search for a candidate solution that
minimizes (or maximizes) the objective function, that is for a globally optimal
solution [1].

Combinatorial problems are often very hard to solve. This fact is identified with
the property of many such problems being NP-hard [2]. That is, according to
the current state of knowledge, in the worst case the computation time necessary
for solving such problems increases exponentially with instance size. Since these
problems anyway need to be tackled in practice, many algorithmic approaches
towards solving them have been proposed. These can be classified as either being
exact or approximate algorithms. An exact algorithm is guaranteed to find the
optimal solution as well as a proof of the optimality of such a solution, in a finite
amount of time. Despite quite some recent successes, exact algorithms are in
many cases not competitive or flexible enough in practice. Therefore, often, the
only feasible goal is to reach a reasonably good solution without any insurance of
optimality. Algorithms with such a goal are often called approximate or heuristic
algorithms. Among these, stochastic local search (SLS) algorithms are probably
the most effective class of algorithms [3, 4].

Many practical problems involve the assessment of candidate solutions accord-
ing to multiple objectives (or criteria). In such a multi-objective approach, the
notion of optimality is different from the single-objective approach. In the single-
objective case one can always say that a solution is better, as good, or worse than
another one. However, in the multi-objective case the different candidate solu-
tions are not necessarily comparable with each other. The optimality depends
on the preferences of the decision maker, who may give different importance to
each objective. If nothing is known about the decision maker’s preferences, it
is common to tackle problems in terms of Pareto optimality [5], to obtain a set
of Pareto optimal solutions. A significant amount of research has recently been
dedicated to applying SLS algorithms to multi-objective problems, in particular
for those where optimisation is understood in Pareto terms [6, 7].

In this thesis we tackle multi-objective flow-shop scheduling problems. The flow-
shop environment models problems where each job consists of a set of operations
that are to be carried on machines, and the machines route, i.e. the order of the
machines, is the same for each job. Flow-shops are a common production envi-
ronment, for example in the chemical industry. We consider the flow-shop with
the following criteria: the minimization of the makespan, i.e. the completion
time of the last job, which has been the most intensively studied criterion for



this problem [8]; the minimization of the sum of completion times (also called
flowtime) of all jobs, which has attracted recently a lot of efforts [9–11]; and the
minimization of the weighted tardiness, a less common criterion which is how-
ever useful in practical applications. For an overview of this problem we refer to
[12].
We develop effective SLS algorithms for the single-objective problems, assum-
ing that using them as components of a higher-level general purpose algorithm
framework can lead to a very effective algorithm to tackle their multi-objective
counterparts. We use the Two-Phase Local Search [13] and the Pareto Local
Search [14] frameworks. The algorithm for the single-objective problems is an
iterated greedy algorithm [15]. This algorithm has been shown to be state-of-
the-art for the makespan criterion. In a first step, we have re-implemented this
algorithm in C++ for making its extension to the other objectives and also for
the multi-objective problems easier. In the second step, we extend this initial
algorithm to the sum of flowtime and weighted tardiness objectives and fine-
tune the algorithms. In the final, third step we extend these algorithms to tackle
the bi-objective versions of the flowshop problem that result from each of the
pairwise combinations of the three objectives.

The main contributions of this thesis can be summarized as follows:

1. We develop new, high performing SLS algorithms for the single-objective per-
mutation flow-shop scheduling problems (PFSPs) with the sum of flowtime
and the weighted tardiness criteria. Many new best known solutions have
been found with these algorithms for commonly used benchmark instances.

2. We explore the application of TPLS and PLS to a new problem and we study
their behavior on three bi-objective PFSPs.

3. The multi-objective algorithm shows very good performance on the problems
tested. In fact, they often find better Pareto fronts than those of a reference
set that extracted the best non-dominated solutions of a set of 23 other
algorithms.

This thesis is structured as follows. In Section 2 we introduce basic notions of
multi-objective optimization, the problems we tackle and the algorithm frame-
works with which we work. In Section 3 we describe the single-objective algo-
rithms that are underlying components for the multi-objective part. Section 4
presents the components and results of the various experimental studies on multi-
objective components. Finally we conclude in Section 5.
As an appendix we give an extended version of this thesis with additional details,
plots and results [16].



2 Preliminaries

2.1 Multi-objective optimization

In MCOPs, (candidate) solutions are ranked according to an objective function
vector f = (f1, . . . , fd) with d objectives. If no a priori assumptions upon the de-
cision maker’s preferences can be made, the goal typically becomes to determine
a set of feasible solutions that “minimize” f in the sense of Pareto optimality.
If u and v are vectors in Rd, we say that u dominates v (u ≺ v) iff u 6= v and
ui ≤ vi, i = 1, . . . , d; if u ≤ v, then u weakly dominates v. We also say that
u and v are nondominated iff u ⊀ v and v ⊀ u and are (pairwise) non weakly
dominated if u 6≤ v and v 6≤ u. For simplicity, we also say that a solution s domi-
nates another one s′ iff f(s) ≺ f(s′). If no other s′ exists such that f(s′) ≺ f(s),
the solution s is called a Pareto optimum. The goal in MCOPs then typically
is to determine the set of all Pareto optimal solutions, which is often called the
Pareto front. Since this task is in many cases computationally intractable, in
practice the goal becomes to find an approximation to the set of Pareto optimal
solutions in a given amount of time that is as good as possible. In fact, any set of
mutually nondominated solutions provides such an approximation. The notion
of Pareto optimality can be extended to compare sets of mutually nondominated
solutions [17, 18]. In particular, we can say that one set A dominates another set
B (A ≺ B), iff every b ∈ B is dominated by at least one a ∈ A.

2.2 Bi-objective permutation flowshop scheduling

In the flowshop scheduling problem (FSP) a set of n jobs (J1, . . . , Jn) is given to
be processed on m machines (M1, . . . ,Mm). All jobs go through the machines
in the same order, i.e., all jobs have to be processed first on machine M1, then
on machine M2 and so on until machine Mm. A common restriction in the FSP
is to forbid job passing, i.e., the processing sequence of the jobs is the same on
all machines. In this case, candidate solutions correspond to permutations of
the jobs and the resulting problem, on which we focus here, is the permutation
flowshop scheduling problem (PFSP). All processing times pij for a job Ji on
a machine Mj are fixed, known in advance and nonnegative. In the following,
we denote by Ci the completion time of a job Ji on machine Mm. For a given
job permutation π, the makespan is the completion time of the last job in the
permutation, i.e., Cmax = Cπ(n). For m ≥ 3 this problem is NP-hard in the
strong sense [19]. In the following, we refer to this problem as PFSP -Cmax.

The other objectives we study are the minimization of the sum of flowtimes
and the minimization of the weighted tardiness. The sum of flowtimes is defined
as

∑n
i=1 Ci. The PFSP with this objective is strongly NP-hard even with only

two machines [19]. In the following, we refer to this problem as PFSP-SFT. For
the weighted tardiness objective, each job has a due date di by which it is to
be finished and a weight wi indicating its priority. The tardiness is defined as
Ti = max{Ci − di, 0} and the total weighted tardiness is given by

∑n
i=1 wi · Ti.

This problem, denoted PFSP-WT, is strongly NP-hard even for one machine.



For a review of previous work dealing with this problem the reader should refer to
the extended version of this thesis [16]. A wide review is given for each criterion
and for the multi-objective PFSP.
In this thesis, we tackle the three bi-objective problems that result from any of
the three possible pairs of objectives. A number of algorithms have been proposed
to tackle each of these specific biobjective problems, but rarely more than one
possible combination of the objectives has been addressed in a single paper.
The available algorithmic approaches range from simple constructive algorithms
to applications of SLS methods such as evolutionary algorithms, tabu search,
or simulated annealing. We refer to the very comprehensive review article of
Minella et al. [12]. This review article gives a comprehensive overview of the
literature on the three problems we tackle here and presents the results of an
extensive experimental analysis of 23 algorithms, either specific or adapted for
tackling the three biobjective PFSPs. This study shows that MOSA [20] seems
to be the best performing algorithm overall. The authors also provide reference
sets for all benchmark instances tackled, where each reference set contains the
nondominated solutions obtained from all the 10 runs of each of the 23 algorithms
(that is, of 230 trials), each run was stopped after the same maximum CPU time.

2.3 Two-phase local search and Pareto local search

In this thesis, we study SLS algorithms that represent two main classes of multi-
objective SLS algorithms [7]: algorithms that follow a component-wise accep-
tance criterion (CWAC), and those that follow a scalarized acceptance criterion
(SAC). As two paradigmatic examples of each of these classes, we use two-phase
local search (TPLS) [13] and Pareto local search (PLS) [14].

Two-Phase Local Search. The first phase of the TPLS consists of using
an effective single-objective algorithm to find a good solution for one objective.
This solution is the initial solution for the second phase, where a sequence of
scalarizations are solved by an SLS algorithm. Each scalarization transforms
the multi-objective problem into a single-objective one using a weighted sum
aggregation. For a given weight vector λ = (λ1, λ2), the value w of a solution s
with objective function vector f(s) = (y1, y2) is computed as:

w = (λ1 · y1) + (λ2 · y2) s.t. λ1, λ2 ∈ [0, 1] ⊂ R and λ1 + λ2 = 1.

In TPLS, each run of the LS algorithm for solving a scalarization uses as
an initial solution the best one found by the previous run of the LS algorithm.
The motivation for using such a method is to exploit the effectiveness of the
underlying single-objective algorithm. The pseudo-code of TPLS is given in Al-
gorithm 1. We denote by SLS1 the SLS algorithm to minimize the first single
objective. SLS2 is the SLS algorithm to minimize the weighted sums.

Pareto Local Search. PLS is an iterative improvement method for solving
MCOPs [21, 22], which is obtained by replacing the usual acceptance criterion of
iterative improvement algorithms for single-objective problems by an acceptance



Algorithm 1 Two-Phase Local Search
Input: A random or heuristic solution π
π′ := SLS1(π);
for all weight vectors λ do
π := π′;
π′ := SLS2(π, λ);
Add π′ to Archive;

end for
Filter Archive;

Algorithm 2 Pareto Local Search
Input: An initial set of solutions A
for each x ∈ A do

explored(s) := false;
end for
while ∃x ∈ A with explored(s) = false do

choose randomly x in A s.t. explored(s) = false;
for each x′ in N (s) do

if x′ � x then
AddAndFilter(A, x′);
explored(s′) := false;

end if
end for
explored(s) := true;

end while

criterion that uses the dominance relation. Given an initial archive of unvisited
nondominated solutions, PLS iteratively applies the following steps. First, it
randomly chooses an unvisited solution s from the candidate set. Then, the
neighborhood of s is fully explored and all neighbors that are not weakly domi-
nated by s or by any solution in the archive are added to the archive. Solutions
in the archive dominated by the newly added solutions are eliminated. Once
the neighborhood of s is fully explored, s is marked as visited. The algorithm
stops when all solutions in the archive have been visited. The PLS algorithm is
illustrated in Algorithm 2.

We also implemented the component-wise step (CW step) procedure. This
CW step procedure has been proposed as a post-processing step of the solutions
produced by TPLS. It adds nondominated solutions in the neighborhood of
the solutions returned by TPLS to the archive, but it does not explore the
neighborhood of these newly added solutions further. Hence, CW step may be
interpreted as a specific variant of PLS with an early stopping criterion. Because
of this early stopping criterion, the CW step results in worse nondominated sets
than PLS. However, its main advantage compared to running a full PLS is that
it typically results only in a very small additional computation time.



3 Single-objective SLS algorithms

For TPLS, the performance of the single-objective algorithm is of high impor-
tance and they actually should be state-of-the-art algorithms for the underlying
single-objective problems and as good as possible for the scalarized problems re-
sulting from the weighted sum aggregations. Motivated by these considerations,
we adopted for PFSP -Cmax the iterated greedy (IG) algorithm (IG-Cmax) by
Ruiz and Stützle [15], which is a current state-of-the-art algorithm for this prob-
lem. An algorithmic outline is given in Algorithm 3. The essential idea of IG is
to iterate over a construction heuristic by first destructing partially a complete
solution; next, from the resulting partial solution πR a full problem solution is
reconstructed and possibly further improved by a local search algorithm. This
solution is then accepted in dependence of an acceptance criterion.

Algorithm 3 Iterated Greedy
π := NEH;
while termination criterion not satisfied do
πR := Destruction(π);
π′ := Construction(πR);
π′ := LocalSearch(π′) % optional;
π := AcceptanceCriterion(π, π′);

end while

For our algorithm development, we reimplemented the IG algorithm [15] in
C++. In a nutshell, IG-Cmax uses the NEH heuristic [23] for constructing the
initial solution and for reconstructing full solutions in the main IG loop. A small
number of d randomly chosen jobs is removed in the destruction phase, and an
effective first-improvement type algorithm based on the insert-neighborhood is
used in the local search. In the insert neighborhood, two solutions are neighbored
if they can be obtained by removing a job from one position and inserting it in
a different one. The acceptance criterion uses the Metropolis condition: A worse
solution is accepted with a probability given by exp (f(π′)− f(π))/T , where f is
the objective function and the temperature parameter T is maintained constant
throughout the run of the algorithm. Parameter values are given in Table 2.

Given the known very good performance of IG-Cmax, we considered using it
also for the other two objectives. A main change concerns the local search im-
plementations, since the speed-ups of Taillard [24] are not anymore applicable,
which leads to a factor n increase of the local search time complexity. As a side
result, it is unclear whether the same neighborhood as for the makespan criterion
should be chosen. We have therefore considered also two other neighborhoods:
(i) the swap neighborhood, where two solutions are neighbored if they can be
obtained by swapping the position of two adjacent jobs; and (ii) the exchange
neighborhood, where two solutions are neighbored if they can be obtained by
exchanging the position of two jobs. We considered only restricted versions of



insert and exchange neighborhoods, where the possible insertion and exchange
moves of only one job are considered.
Other changes concern the formula for the definition of the temperature parame-
ter for the acceptance criterion. This is rather straightforward for the PFSP-SFT,
which can be done by adapting slightly the way the temperature is defined. For
PFSP-WT no input data-driven setting as for the other two objectives could be
obtained due to large variation of the objective values. Therefore, the tempera-
ture parameter is defined relating it to a given target percentage deviation from
the current solution. Another important adaptation for the PFSP-WT has been
to find a good constructive heuristic for the initial solution of the IG. Indeed the
original NEH heuristic is not adapted to this criterion. The reason is simple: up
to a certain length of partial solution during the construction phase, the sum
of the tardiness stays zero. In this case, only the last few jobs will be really
inserted to the best position. In the NEH heuristic these jobs are the ones with
the smallest sum of processing time, without consideration of their due dates
or priorities. The NEH heuristic is not anymore helpfull in its original version.
Therefore we have decided to study several heuristics with the aim of selecting
the best one.
As the weighted tardiness criterion is not very studied, we have adapted some
heuristics originally proposed for the total tardiness criterion, and tested other
possibilites. This results in a comparison of 16 differents heuristics that have
been tested. Actually, among these heuristics eight are relatively simply com-
pared to NEH, in particular four of them simply sort the jobs following a given
formula, that is so called dispatching rules. The eight more complex heuristics
are an adaptation of the NEH heuristic seeded by an ordering given by the sort.
Obviously this results in a different computation time between the dispatching
rules and the NEH adaptations. However, we focus here on the quality of the
constructed solution, considering that even the adaptations of the original NEH
are fast enough. We give here the formulas corresponding to each heuristic. The
arrow denotes if the jobs are sorted following an increasing (↑) or a decreasing
(↓) order. We denote as Cj(i) the completion time of the job j when inserting
at the end of partial solution at iteration i, i.e. in position i. The following dis-
patching rules have been tested to compute the “interest value” of a given job j.
During iteration i, the job with the lowest (↑) or the largest (↓) “interest value”
is chosen among the remaining jobs, and inserted in position i.



LWDD (Latest Weigthed Due Dates): wj .dj ↓
EWDD (Earliest WDD: wj .dj ↑

LWDDP (LWDD with Proc. times): wj .dj/

m∑
i=1

pij ↓

EWDDP (EWDD with Proc. times): wj .dj/

m∑
i=1

pij ↑

MWDD (Modified WDD): wj .max{dj , Cj(s)} ↑

MWDDP (MWDD with Proc. times): wj .max{dj , Cj(s)/}
m∑
i=1

pij ↑

WSLACK (Weighted SLACK heuristic): wj · (dj − Cj(s)) ↑

WSLACKP (WSLACK with Proc. times): wj · (dj − Cj(s))/
m∑
i=1

pij ↑

The eight others heuristics denoted nehLWDD, nehEWDD, etc., are an adap-
tation of the original NEH heuristic taking the results of the above heuristic as
initial order, instead of taking the jobs sorted by the decreasing sum of their
processing times.
For each instance (we generated our own benchmark set), and for each heuristic,
we computed the relative difference over the minimum found by one of the 16
heuristics. Then, for each heuristics we compute the mean of its relative differ-
ence over all instances. This allow to order these heuristics, as shown in Table 1.
Thanks to this experiment, we have decided to use the heuristic nehWSLACK
as the constructive heuristic for the PFSP-WT. To the best of our knowledges,
this heuristic has never been used before. Note that this sorting is only relevant
when NEH constructs the initial solution; in the main loop of IG the jobs are
considered in random order.

We tuned the IG algorithms for PFSP-SFT and PFSP-WT using iterated
F-Race [25]. The final configurations retained from this tuning phase are given
in Table 2. The lines IG-(Cmax,SFT) and IG-(·,WT) concern the scalarized
problems where the weights are different from one and zero for the indicated
objectives. The parameter for these algorithms have been chosen because they
seem good for each criterion.
A closer examination of the performance of the resulting single-objective algo-
rithms (not reported here) showed that for the sum of flowtime the final IG
algorithm is competitive to current state-of-the-art algorithms as of 2009; for
the total tardiness objective the performance is also very good and very close to
state-of-the-art; in fact we could improve with the IG algorithms a large fraction
(in each case more than 50%) of the best known solutions of available benchmark
sets.



Table 1. Indicated are the name of the heuristics and the average relative difference
to the minimum value found so far. nehWSLACK performs by far the best.

1 nehWSLACK 1.6

2 nehWSLACKP 3.4

3 nehEWDD 14.5

4 nehEWDDP 15.0

5 nehLWDDP 15.9

6 nehLWDD 16.2

7 nehMWDD 23.3

8 nehMWDDP 23.9

9 WSLACK 29.2

10 WSALCKP 30.3

11 LWDDP 43.5

12 LWDD 46.4

13 EWDD 61.5

14 EWDDP 62.8

15 MWDD 63.7

16 MWDDP 64.7

Table 2. Adaptation of IG to tackle each objective, and the scalarized problems of
each combination of criteria. A (↓) denotes a decreasing order, and a (↑) denotes an
increasing order. Tp is a parameter of the formula for Temperature. Settings for IG-
Cmax follow [15]. For IG-SFT, the formula of Temperature is the same as IG-Cmax

but multiplied by n. For IG-WT, the initial order for NEH is given by the well-known
SLACK heuristic [26] augmented with priorities wi. Parameter d is the number of jobs
removed in the destruction phase. Insert-T refers to a full insert iterative improvement
using the speed-ups of Taillard [24]; Swap to a full iterative improvement execution
using the swap neighborhood and Ins. to the insertion search for one job. For details
see the text.

Algorithm Init. order for NEH Temperature Tp d LS

IG-Cmax

Pm
j=1 pij (↓) Tp ·

Pn
i=1

Pm
j=1 pij

n·m·10 0.4 4 Insert-T

IG-SFT
Pm

j=1 pij (↓) Tp ·
Pn

i=1
Pm

j=1 pij

m·10 0.5 5 Swap

IG-WT wi · (di − Ci(s)) (↑) 100
Tp·f(s)

0.7 4 Swap+Ins.

IG-(Cmax,SFT)
Pm

j=1 pij (↓) 100
Tp·f(s)

0.5 5 Swap

IG-(·,WT) wi · (di − Ci(s)) (↑) 100
Tp·f(s)

0.5 5 Swap



4 Multi-objective SLS algorithms

In what follows, we first study main algorithm components of the PLS and
TPLS algorithms and then present a comparison of a final hybrid SLS algorithm
to reference sets of the best solutions found so far for a number of benchmark
instances.

Benchmark set. We used the benchmark from Minella et al. [12]. This
benchmark consists of the benchmark set of Taillard [27], which has been aug-
mented with due dates and priorities. In order to avoid over-tuning, we performed
the algorithm component analysis on 20 additional instances of size 50x20 and
100x20, which have been generated following the procedure used by Minella et
al. [12].

Correlations. We want to measure the correlation between the objectives.
We do so by generating 10000 random solutions for 10 large instances (200x20).
We found the following results for the linear correlation between each pair of
objectives.

Correlation between Cmax and
∑

Cj : 0.655

Correlation between Cmax and
∑

wj · Tj : 0.404

Correlation between
∑

Cj and
∑

wj · Tj : 0.625

We applied the Spearman’s rank order test at α = 0.05 to check wether the
correlations are statistically signifcantly different from zero. In all cases, the null
hypothesis was rejected.

Performance assessment. Results are analyzed by graphically examining
the attainment surfaces of a single algorithm and differences between the empiri-
cal attainment functions (EAF) of pairs of algorithms. The EAF of an algorithm
provides the probability, estimated from several runs, of an arbitrary point in
the objective space being attained by (dominated by or equal to) a solution ob-
tained by a single run of the algorithm [28]. An attainment surface delimits the
region of the objective space attained by an algorithm with a certain minimum
probability. In particular, the worst attainment surface delimits the region of the
objective space always attained by an algorithm, whereas the best attainment
surface delimits the region attained with the minimum non-zero probability. Sim-
ilarly, the median attainment surface delimits the region of the objective space
attained by half of the runs of the algorithm. Examining the attainment surfaces
allows to assess the likely location of the output of an algorithm. On the other
hand, examining the differences between the EAFs of two algorithms allows to
identify regions of the objective space where one algorithm performs better than
another. Given a pair of algorithms, the differences in favor of each algorithm
are plotted side-by-side and the magnitude of the difference is encoded in gray
levels.



We give in Figure 1 two plots which show the EAF for two different algorithms. In
Figure 2 we give an example of EAF difference for these algorithms. López-Ibáñez
et al. [29] provide a more detailed explanation of these graphical techniques and
tools for their application.

1.2e+05 1.23e+05 1.26e+05 1.29e+05
objective 1

4e
+

04
6e

+
04

8e
+

04

ob
je

ct
iv

e 
2

(0.8, 1.0]
(0.6, 0.8]
(0.4, 0.6]
(0.2, 0.4]
(0.0, 0.2]

1.2e+05 1.23e+05 1.26e+05 1.29e+05
objective 1

4e
+

04
6e

+
04

8e
+

04

ob
je

ct
iv

e 
2

(0.8, 1.0]
(0.6, 0.8]
(0.4, 0.6]
(0.2, 0.4]
(0.0, 0.2]

Fig. 1. An example of the EAF for two different algorithms.

Fig. 2. The difference of the two previous EAFs. On the left, the dark region represents
where the first algorithm performs better that the second one. On the right it is the
opposite. The darker is the color, the higher is the difference. One can also see the worst,
median and best region attained by each algorithm. We can see that the algorithm
on the left performs sligthly better on the sides of the Pareto front approximation,
relatively to the other one. Conversely, the algorithm on the right is slightly better on
the middle.



4.1 Analysis of PLS components

Seeding. As a first experiment, we analyzed the computation time required
and the final quality of the nondominated sets obtained by PLS when PLS is
seeded with solutions of different quality. We test seeding PLS with: (i) one ran-
domly generated solution, (ii) two good solutions (one for each single objective)
obtained by the NEH heuristics (see Table 2), and (iii) two solutions obtained
by IG for each objective after 10 000 iterations. Figure 3 gives representative
examples of nondominated sets obtained by PLS for each kind of seed and in-
dicates the initial seeding solutions of NEH and IG (the random initial solution
is not shown because it is far out of the plotted objective ranges). The best
nondominated sets, in terms of a wider range of the Pareto front and higher
quality solutions, are obtained when using the IG seeds. Generally, seeding PLS
by good and very good solutions gives clear advantages in terms of the quality of
the nondominated sets obtained; the advantage is strongest for the bi-objective
problem that considers makespan and total flowtime and slightly less for the
other two. We further examined the computation time required by PLS in de-
pendence of the initial seed in Table 3. Our conclusion is that seeding PLS with
very good initial solutions does not have a strong effect in computation time.
Given the strong improvement on solution quality, seeding PLS with a set of
nondominated solutions obtained by TPLS is pertinent.

6500 6700 6900 710038
00

00
40

00
00

42
00

00

Objectives: Cmax and ∑∑Cj

Cmax

∑∑
C

j

●

●

●

random set
heuristic set
IG set
heuristic seeds
IG seeds

6600 7000 7400 78005e
+

05
7e

+
05

9e
+

05

Objectives: Cmax and ∑∑wjTj

Cmax

∑∑
w

jT
j

●

●

●

random set
heuristic set
IG set
heuristic seeds
IG seeds

380000 400000 420000

6e
+

05
8e

+
05

1e
+

06

Objectives: ∑∑Cj and ∑∑wjTj

∑∑Cj

∑∑
w

jT
j

●

●

●

random set
heuristic set
IG set
heuristic seeds
IG seeds

Fig. 3. Nondominated sets obtained by PLS using different quality of seeds. The solu-
tion randomly generated is outside the range shown.



Table 3. Average computation time (and standard deviation) of PLS for different
types of seeds.

random heuristic IG
Objectives Instance Size avg. sd. avg. sd. avg. sd.

(Cmax,
P
Ci) 50x20 8.85 2.05 6.23 2.48 4.56 0.38

100x20 177.40 27.60 142.23 29.79 162.14 26.09

(Cmax,
P
wiTi) 50x20 31.61 6.84 33.85 7.46 24.02 3.84

100x20 641.96 215.55 767.23 299.33 626.48 114.08

(
P
Ci,

P
wiTi) 50x20 26.72 3.02 28.17 2.62 23.70 3.33

100x20 742.42 157.10 807.75 121.70 895.23 176.29

Neighborhood operator. We experiment with PLS variants using three
different neighborhoods: (i) the insertion, (ii) the exchange, and (iii) the ex-
change plus insertion neighborhoods. The latter simply checks for all moves in
the exchange and insertion neighborhood of each solution. We measured the
computation time of PLS with each underlying operator for each combination
of objectives (Table 4). The computation time of the combined exchange and
insertion neighborhood is slightly more than the sum of the computation times
for the exchange and insertion neighborhoods. For comparing the quality of the
results, we examine the EAF differences of 10 independent runs. Figure 4 gives
two representative examples. Typically, the exchange and insertion neighbor-
hoods lead to better performance in different regions of the Pareto front (top
plot), and both of them are consistently outperformed by the combined exchange
and insertion neighborhood (bottom plot).

Table 4. Average computation time (and standard deviation) of PLS for different
neighborhood operators.

exchange insertion ex. + ins.
Objectives Instance Size avg. sd. avg. sd. avg. sd.

(Cmax,
P
Ci) 50x20 2.21 0.35 1.57 0.44 4.84 1.06

100x20 77.56 19.44 70.91 12.8 157.64 30.26

(Cmax,
P
wiTi) 50x20 12.94 3.11 10.11 1.75 23.03 4.09

100x20 314.63 69.08 251.84 49.33 611.6 115.02

(
P
Ci,

P
wiTi) 50x20 14.24 3.79 9.51 1.8 23.72 3.87

100x20 492.91 102.59 239.04 101.47 872.32 262.21



3.8e+05 3.84e+05 3.88e+05 3.92e+05 3.96e+05 4e+05
objective 1

5e
+

05
6e

+
05

7e
+

05
8e

+
05

ob
je

ct
iv

e 
2

100x20_3_SFTWT_ins

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

3.8e+05 3.84e+05 3.88e+05 3.92e+05 3.96e+05 4e+05
objective 1

5e
+

05
6e

+
05

7e
+

05
8e

+
05

ob
je

ct
iv

e 
2

100x20_3_SFTWT_ex

3.8e+05 3.84e+05 3.88e+05 3.92e+05 3.96e+05 4e+05
objective 1

5e
+

05
6e

+
05

7e
+

05
8e

+
05

ob
je

ct
iv

e 
2

100x20_3_SFTWT_ins

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

3.8e+05 3.84e+05 3.88e+05 3.92e+05 3.96e+05 4e+05
objective 1

5e
+

05
6e

+
05

7e
+

05
8e

+
05

ob
je

ct
iv

e 
2

100x20_3_SFTWT_exins

Fig. 4. EAF differences for (top) insertion vs. exchange and (bottom) exchange vs.
exchange and insertion. The combination of objectives is

P
Ci and

P
wiTi.

4.2 Analysis of TPLS components

Search strategy. The search strategy determines how the information is shared
between each scalarization.
The most simple strategy is to not share any information between each underly-
ing resolution. When a new scalarization is solve, we simply start from a random
solution or with solution from a constructive heuristic (we tested this latter op-
tion). We denote this strategy RESTART, the pseudo-code is given in Algorithm
4. An other strategy is to transfer some information from a previous run of the
SLS algorithm to the next one, i.e. to start the next run from the previously
found solution. We denote this strategy 2PHASE as it is the original one from
[13]. The pseudo-code has been given in Section 2. Figure 5 illustrates these two
strategies.



Algorithm 4 RESTART strategy
for all weight vectors λ do
π := random or heuristic solution;
π′ := SLS(π, λ);
Add π′ in Archive;

end for

Fig. 5. Search strategy. The RESTART strategy is illustrated on the left, the 2PHASE
strategy on the right.

The two stategies perform roughly similar. However, each time a difference
appears, it is in advantage of 2PHASE. The search space structure for the PFSP
seems to be such that use a good solution as a seed increase the chance for each
scalarization to yield a better solution. We can expect that for the PFSP, two
good solutions close to each other in the objective space are also close to each
other in the search space. As 2PHASE seems to perform most of the time at
least as good as RESTART, and sometimes slightly better, the strategy should
be used for the first phase. For all further experiments, we use the 2PHASE
strategy.

Number of scalarizations and number of iterations. In TPLS, each
scalarization is computed using a different weight vector. In this paper, we use
a regular sequence of weight vectors from λ = (1, 0) to λ = (0, 1). If Nscalar is
the number of scalarizations, the successive scalarizations are defined by weight
vectors λi = (1− (i/Nscalar), i/Nscalar), i = 0, . . . , Nscalar.

For a fixed computation time, there is a tradeoff between the number of
scalarizations to be used and the number of iterations to be given for each of
the invocations of the single-objective SLS algorithm. In fact, the number of
scalarizations (Nscalar) determines how many scalarized problems will be solved
(intuitively, the more the better approximations to the Pareto front may be
obtained), while the number of iterations (Niter) of IG determines decisively
how good the final IG solution will be. Here, we examine the trade-off between
the settings of these two parameters by testing all 9 combinations of the following
settings: Nscalar = {10, 31, 100} and Niter = {100, 1 000, 10 000}.



We first studied the impact of increasing either Nscalar or Niter for a fixed
setting of the other parameter. Although clearly improvements are obtained by
increasing each of the two parameters, there are significant differences. While
for the number of scalarizations some type of limiting behavior without strong
improvements was observed when going from 31 to 100 scalarizations (while im-
provements from 10 to 31 were considerable), increasing the number of iterations
of IG alone seems always to incur significant improvements.

Next, we compare settings that require roughly the same computation time.
Figure 6 compares a configuration of TPLS using Nscalar = 100 and Niter = 1000
against other configuration using Nscalar = 10 and Niter = 10000. Results are
shown for two of the three combinations of objective functions. (The results
are representative for other instances.) As illustrated by the plots, there is no
clear winner in this case. A larger number of iterations typically produces better
solutions in the extremes of the Pareto front. On the other hand, a larger num-
ber of scalarizations allows to find trade-off solutions that are not found with
a smaller number of scalarizations. Given these results, among settings that
require roughly the same computation time, there is no single combination of
settings that produces the best results overall among all objectives and instances.

Double TPLS. We denote as Double TPLS (DTPLS) the following strategy.
First, the scalarizations go sequentially from one objective to the other one, as in
the usual TPLS. Then, another sequence of scalarizations is performed starting
from the second objective back to the first one. To introduce more variability,
the weight vectors used in the first TPLS pass are alternated with the weight
vectors used for the second TPLS pass. We compared this DTPLS strategy with
the simple TPLS using 30 scalarizations of 1000 iterations. Although we found
on several instances strong differences, these differences were not consistent in
favor of advantages of DTPLS over TPLS or vice versa. This gives some evidence
that the two strategies do not behave the same, but we left it for further research
to investigate which instances features may explain the observed differences.

Weight setting strategy. In order to define the sequence of weight vec-
tors that define each scalarization, several strategies can be used. Here we will
focus on the REGULAR strategy, and the ANYTIME strategy. We call REGU-
LAR the strategy which uses a regular distribution of the weight vectors, from
λ = (1, 0) to λ = (0, 1). In this case, the different vectors are sequential, go-
ing from one objective to the other one, and the stopping criterion for the first
phase is, as seen above, the number of scalarization. We call ANYTIME an other
strategy that we have implemented. This strategy can be useful in real practical
applications, since the algorithm can be stopped at a given time unknown at the
beginning. In this case, the sequence of weight vectors is not sequencially dis-
tributed from one objective to the other one. The first one (after the two initial
solutions have been found), is the vector (0.5, 0.5). Then the two next vectors
will be (0.25, 0.75) and (0.75, 0.25), and so on. This strategy can be seen as an
iterative weight setting which at each iteration, define a new weight vector be-



6350 6450 6550 6650 6750 6850
objective 1

3.
75

e+
05

3.
8e

+
05

3.
85

e+
05

3.
9e

+
05

3.
95

e+
05

ob
je

ct
iv

e 
2

DD_Ta085.100_1000_MSFT

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

6350 6450 6550 6650 6750 6850
objective 1

3.
75

e+
05

3.
8e

+
05

3.
85

e+
05

3.
9e

+
05

3.
95

e+
05

ob
je

ct
iv

e 
2

DD_Ta085.10_10000_MSFT

6350 6450 6550 6650 6750 6850 6950 7050
objective 1

5e
+

05
6e

+
05

7e
+

05
8e

+
05

ob
je

ct
iv

e 
2

DD_Ta085.100_1000_MWT

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

6350 6450 6550 6650 6750 6850 6950 7050
objective 1

5e
+

05
6e

+
05

7e
+

05
8e

+
05

ob
je

ct
iv

e 
2

DD_Ta085.10_10000_MWT

Fig. 6. EAF differences between Nscalar = 100 and Niter = 1000, versus Nscalar = 10
and Niter = 10000 for two combinations of objectives: Cmax and

P
Ci (top) and Cmax

and
P
wiTi (bottom).

tween each pairwise of adjacent vectors previously found. We present in Figure
7 an example of the beginning of such a strategy.
Moreover, we have implemented an interesting feature. In order to choose an
initial solution for the next scalarization, we cannot use anymore the solution
found by the previous solution. Indeed, the weight vectors can be quite far from
the previous one. Therefore we propose a new way to define these initial solu-
tions. All previously found solutions are keep in memory, along with the weight
vectors from which they were derived. This allow to know, when defining a new
scalarization, the solutions found by the two nearest weight vectors at each side
of the new one. Then the aggregate function value is computed for these two
solutions, and the best one with respect to the current weight vector is kept as
initial solution. Technically, the solutions in memory are sorted following their
corresonding weight vectors to allow an efficient search among the data structure.



Fig. 7. Anytime strategy: The number at the end of each arrow gives the order in
which the aggregate problems are solve.

In Figure 8, we give some results for the evaluation of the weight setting
strategies. We used 10 runs for each instance, and 31 scalarizations of 1000
iterations. We chose 31 in order to make a fair comparison, because with this
number the ANYTIME strategy can finish entirely a “level of depth”. These two
strategies seem very similar in term of performance. We can conclude that our
implementation of the ANYTIME strategy, with the particular way for choose
the initial solution, perform as good as the regular one (if it is stopped at the
end of a “level of depth”). Using this strategy can be very useful in practice,
for example in all practical dynamic applications, when the computation time
devoted to the resolution of a problem is not necessarily fixed in advance.



6400 6500 6600 6700 6800 6900
objective 1

3.
85

e+
05

3.
9e

+
05

3.
95

e+
05

4e
+

05

ob
je

ct
iv

e 
2

100x20_2_MSFT_anytime

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

6400 6500 6600 6700 6800 6900
objective 1

3.
85

e+
05

3.
9e

+
05

3.
95

e+
05

4e
+

05

ob
je

ct
iv

e 
2

100x20_2_MSFT_regular

6400 6500 6600 6700 6800 6900 7000 7100 7200
objective 1

5e
+

05
6e

+
05

7e
+

05
8e

+
05

9e
+

05
1e

+
06

ob
je

ct
iv

e 
2

100x20_2_MWT_anytime

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

6400 6500 6600 6700 6800 6900 7000 7100 7200
objective 1

5e
+

05
6e

+
05

7e
+

05
8e

+
05

9e
+

05
1e

+
06

ob
je

ct
iv

e 
2

100x20_2_MWT_regular

3.82e+05 3.88e+05 3.94e+05 4e+05 4.06e+05
objective 1

5e
+

05
6e

+
05

7e
+

05
8e

+
05

9e
+

05

ob
je

ct
iv

e 
2

100x20_2_SFTWT_anytime

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

3.82e+05 3.88e+05 3.94e+05 4e+05 4.06e+05
objective 1

5e
+

05
6e

+
05

7e
+

05
8e

+
05

9e
+

05

ob
je

ct
iv

e 
2

100x20_2_SFTWT_regular

Fig. 8. Evaluation of the two different weight setting strategies on one instance for the
three combinations of criteria. Performances are similar.



4.3 TPLS + PLS vs. TPLS + CW step.

As a final step, we compare the performance tradeoffs incurred by either running
PLS or the CW step to the archive of solutions returned by TPLS. For all
instances, we generated 10 initial sets of solutions by running a simple TPLS
with 30 scalarizations of 1000 iterations each. Then, we independently apply
to these initial sets the CW step and PLS, both using the exchange and the
insertion neighborhoods. In other words, each method starts from the same set
of initial solutions in order to reduce variance.

Table 5 gives the additional computation time that is incurred by PLS and
the CW step after TPLS has finished for each of the three combinations of ob-
jectives. The results clearly show that the CW step incurs only a minor overhead
with respect to TPLS, while PLS requires considerably larger times, especially
on larger instances. Moreover, the times required to terminate PLS are much
lower than when seeding it with only two very good solutions (compare with Ta-
ble 3). With respect to solution quality, Figure 9 compares the three approaches:
TPLS versus TPLS+CW step (top), and TPLS+CW step versus TPLS+PLS
(bottom). As expected, the CW step is able to slightly improve the results of
TPLS, while PLS produces much better results. In summary, if computation
time is very limited, the CW step provides significantly better results at almost
no computational cost; however, if enough time is available, PLS improves much
further than the sole application of the CW step.

Table 5. Average computation time and standard deviation for CW step and PLS.

Instance CW-step PLS
Objectives Size avg. sd. avg. sd.

(Cmax,
P
Ci) 50x20 0.20 0.02 2.40 0.75

100x20 1.56 0.40 75.04 32.53

(Cmax,
P
wiTi) 50x20 0.37 0.03 7.43 2.11

100x20 2.51 0.42 202.71 50.51

(
P
Ci,

P
wiTi) 50x20 0.34 0.04 8.99 1.71

100x20 2.75 0.34 373.15 87.44



6400 6500 6600 6700 6800 6900 7000 7100 7200
objective 1

6e
+

05
7e

+
05

8e
+

05
9e

+
05

1e
+

06

ob
je

ct
iv

e 
2

100x20_2_MWT_simple

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

6400 6500 6600 6700 6800 6900 7000 7100 7200
objective 1

6e
+

05
7e

+
05

8e
+

05
9e

+
05

1e
+

06

ob
je

ct
iv

e 
2

100x20_2_MWT_set_cw

6400 6500 6600 6700 6800 6900 7000 7100 7200

objective 1

6
e

+
0

5
7

e
+

0
5

8
e

+
0

5
9

e
+

0
5

o
b

je
c
ti
v
e

 2

100x20_2_MWT_set_cw

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

6400 6500 6600 6700 6800 6900 7000 7100 7200

objective 1

6
e

+
0

5
7

e
+

0
5

8
e

+
0

5
9

e
+

0
5

o
b

je
c
ti
v
e

 2

100x20_2_MWT_set_pls

Fig. 9. EAF differences between (top) simple TPLS vs. TPLS + CW-step, and (bot-
tom) TPLS + CW-step vs. TPLS + PLS. Objectives are Cmax and

P
wiTi.

4.4 Comparison to existing algorithms

In order to compare our algorithm with existing work, we used the benchmark
of Minella et al. [12], which is Taillard’s benchmark set augmented with due
dates. In their review, the authors compare 23 heuristics and metaheuristics
using bi-objective combinations of makespan (Cmax), sum of flowtime (

∑
Ci),

and total tardiness (
∑
Ti). They also provide the best-known nondominated

solutions across all 23 algorithms and all 10 runs for each of the algorithms. We
use these sets as reference sets to compare with our algorithm. As the reference
sets are given for the total tardiness criterion, we slightly modified our algorithm
by setting all the priorities to one (wi = 1).

In particular, we compare our results with the reference sets given for a
computation time of 200 seconds and corresponding to instances from ta081 to
ta090 (size 100x20). These reference sets were obtained on an Intel Dual Core
E6600 CPU running at 2.4 Ghz. By comparison, our algorithms were run on a



Intel Xeon E5410 CPU running at 2.33 Ghz with 6MB of cache size, under Clus-
ter Rocks Linux. Both machines result in approximately similar speed according
to bogomips information; however, to be conservative, we decided to round down
the quality of our results by using only 150 CPU seconds. For our algorithms, we
used the following parameter settings. The two extreme solutions are generated
by running IG for 10 seconds each. Then TPLS starts from the solution obtained
for the first objective and runs 14 scalarizations of 5 seconds each. Finally, we
apply PLS with the exchange plus insertion neighborhood and stop it after 60
CPU seconds. We repeat each run 10 times with different random seeds.

For each instance, we compare the best, median and worst attainment sur-
faces obtained by our algorithm with the corresponding reference set. Figure 10
shows results for the three objective combinations. In most cases, the median
attainment surface of our algorithm is very close (and often dominates) the ref-
erence set obtained by 10 runs of 23 algorithms, each run using 200 CPU seconds
(that is, the overall computation time is more than 12 hours of CPU time per
instance). Moreover, the current state-of-the-art algorithms for these problems
are among these algorithms. Therefore, we conclude that our algorithm is clearly
competitive and probably superior to the current state-of-the-art for these prob-
lems. All the results and plots are available online at:
http://iridia.ulb.ac.be/~jdubois



6300 6450 6600 6750 6900
objective 1

3.
75

e+
05

3.
9e

+
05

4e
+

05

ob
je

ct
iv

e 
2

best
median
worst
Reference_Set

6250 6350 6450 6550 6650 6750 6850
objective 1

3.
8e

+
05

3.
9e

+
05

4e
+

05

ob
je

ct
iv

e 
2

best
median
worst
Reference_Set

6300 6450 6600 6750 6900
objective 1

1.
2e

+
05

1.
4e

+
05

1.
6e

+
05

ob
je

ct
iv

e 
2

best
median
worst
Reference_set

6250 6400 6550 6700 6850
objective 1

1.
3e

+
05

1.
5e

+
05

ob
je

ct
iv

e 
2

best
median
worst
Reference_set

3.71e+05 3.74e+05 3.77e+05 3.8e+05
objective 1

1.
22

e+
05

1.
28

e+
05

1.
34

e+
05

ob
je

ct
iv

e 
2

best
median
worst
Reference_set

3.77e+05 3.8e+05 3.83e+05 3.86e+05
objective 1

1.
25

e+
05

1.
3e

+
05

1.
35

e+
05

ob
je

ct
iv

e 
2

best
median
worst
Reference_set

Fig. 10. Comparison of our algorithm against reference set for objectives Cmax andP
Ci (top), Cmax and

P
Ti (middle), and on

P
Ci and

P
Ti on instances DD Ta081

(left) and DD Ta082 (right).



5 Conclusion

In this master thesis, we tackled the permutation flow-shop problem (PFSP), a
well-known combinatorial optimization problem in scheduling. This problem has
been studied with a multi-objective approach. The objectives we have consid-
ered are: (i) the minimization of the makespan, (ii) the minimization of the sum
of the flowtime and (iii) the minimization of the weighted tardiness. To tackle
these problems effectively, we have based our work on the following hypothesis:

An effective way of tackling multi-objective combinatorial optimization prob-
lems is to extend very effective algorithms for the underlying single-objective
problems by using them as components for a higher-level multi-objective ap-
proach. Such approaches may result in state-of-the-art performance.

Following this hypothesis, we have first implemented a very effective single-
objective algorithm for each criterion. For the makespan criterion, the Iterated
Greedy (IG) of Ruiz and Stützle [15] is known to be the state-of-the-art approach
and we based also our algorithms for the other objectives on this same method.
We first re-implemented the IG for the makespan criterion, and checked that
our implementation yields the same results as the original one. Then, for the
single-objective step of this thesis, our main contributions are:

1. We adapted the IG algorithm to tackle the minimization of the sum of flow-
time. We compared our algorithm with the most recent ones from the liter-
ature, and showed that it is very competitive. In a production mode of the
algorithm we improved the best known solutions.

2. We adapted also the IG method to tackle the minimization of the weighted
tardiness. The comparison with results from the literature showed that for
this criterion too, our single-objective algorithm is very effective. We im-
proved the best known solutions for many known benchmark instances for
the total tardiness.

Once we had very effective algorithms to minimize each objective, we then
approached the multi-objective problems derived from each pairwise combination
of objectives. We used Two-Phase Local Search (TPLS) as a framework to tackle
multi-objective problems relying on our single-objective algorithms as underlying
components. This method tackles multi-objective problems by solving a sequence
of scalarizations. In order to possibly yield better results, we implemented also
the Pareto Local Search (PLS). For the multi-objective part of this thesis, our
contributions are:

1. We implemented the TPLS framework as a set of components. A lot of ex-
periments have been carried out to study the behavior of these components.
We studied two different search strategies, by allowing information sharing
between different scalarizations, and showed that for our problems the best
strategy is to start a scalarization from the resulting solution of the previous
one. We studied different weight setting strategies, showing that a procedure



that can be stopped at anytime can yield similar results to standard TPLS
strategy. Such a procedure can be useful in practical applications if no fixed
computation times are allocated. We experimented also the double TPLS
and compare it to te standard TPLS, showing that the quality of the results
can be considered in general as roughly similar.

2. We implemented PLS, and studied its behavior. We showed that the results
can be significantly improved by seeding PLS with good solutions. We made a
comparison of different underlying neighborhood operators, showing that the
exchange operator performs better than the insertion operator for a similar
amount of time, and that the best results are obtained with a combination
of the two operators.

3. We applied a component-wise step (CW step) to the result set obtained by
TPLS, and we compared the results with the application of PLS starting from
the same set. PLS performed much better, but it required also a much higher
additional computation time than CW step and it incurs a high variability
of computation times.

4. From the insights obtained through the experimental analysis of the impact
of the components of TPLS and PLS, we derived a final SLS algorithm
that we applied to a large set of bi-objective PFSPs, comparing them to
reference sets that have been extracted from the results of 10 runs of 23
algorithms (including all state-of-the-art algorithms for the respective bi-
objective problems) on the same benchmark instances. We showed that this
final SLS algorithm typically outperforms these reference sets and, hence,
we are safe to assume that it is a new state-of-the-art algorithm for all the
bi-objective PFSPs tackled in this thesis.

In additional work, we have implemented several components that are not pre-
sented in this thesis, in particular, other weight setting strategies or path-
relinking operators. Studies on the behavior of these components are ongoing
work. Further work could be also done by studying finely the interactions be-
tween components, and by studying the time allocation between PLS and TPLS.

In our work we have shown that our underlying working hypothesis, which is ex-
plicitely stated above, leads to very effective SLS algorithms for the bi-objective
PFSPs we have studied here. In this sense, we add further evidence to previous
work on similar types of algorithms [13, 30], which have recently received signif-
icant attention in multi-objective combinatorial optimization. In fact, judging
by the overall results of our work here, we are convinced that the increased
exploitation of the best single-objective algorithms as underlying components,
will be instrumental to further boost the performance of SLS algorithms for
multi-objective combinatorial optimization.



References

1. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization – Algorithms and
Complexity. Prentice Hall, Englewood Cliffs, NJ, USA (1982)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA, USA (1979)

3. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco, CA, USA (2005)

4. Yannakakis, M.: Computational complexity. In Aarts, E.H.L., Lenstra, J.K., eds.:
Local Search in Combinatorial Optimization. John Wiley & Sons, Chichester, UK
(1997) 19–55

5. Ehrgott, M.: Multicriteria Optimization. Volume 491 of Lecture Notes in Eco-
nomics and Mathematical Systems. Springer Verlag, Heidelberg, Germany (2000)

6. Ehrgott, M., Gandibleux, X.: Approximative solution methods for combinatorial
multicriteria optimization. TOP 12(1) (2004) 1–90

7. Paquete, L., Stützle, T.: Stochastic local search algorithms for multiobjective com-
binatorial optimization: A review. In Gonzalez, T.F., ed.: Handbook of Approxima-
tion Algorithms and Metaheuristics. Chapman & Hall/CRC (2007) 29–1—29–15

8. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation
flowshop heuristics. European Journal of Operational Research 165 (2005) 479–
494

9. Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs. European Journal of
Operational Research 155(2) (2004) 426 – 438

10. Liao, C.J., Tseng, C.T., Luarn, P.: A discrete version of particle swarm optimiza-
tion for flowshop scheduling problems. Computers & Operations Research 34(10)
(2007) 3099 – 3111

11. Tsenga, L.Y., Lin, Y.T.: A hybrid genetic local search algorithm for the permu-
tation flowshop scheduling problem. European Journal of Operational Research
198(1) (2009) 84 – 92

12. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective
algorithms for the flowshop scheduling problem. INFORMS Journal on Computing
20(3) (2008) 451–471

13. Paquete, L., Stützle, T.: A two-phase local search for the biobjective traveling
salesman problem. In Fonseca, C.M., et al., eds.: Proceedings of the Evolutionary
Multi-criterion Optimization (EMO 2003). Volume 2632 of LNCS., Springer Verlag
(2003) 479–493

14. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: An experimental study. In Gandibleux, X.,
et al., eds.: Metaheuristics for Multiobjective Optimisation. Volume 535 of LNEMS.
Springer Verlag (2004) 177–200

15. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the per-
mutation flowshop scheduling problem. European Journal of Operational Research
177(3) (2007) 2033–2049

16. Dubois-Lacoste, J.: A study of pareto and two-phase local search algorithms for
biobjective permutation flowshop scheduling. Master’s thesis, IRIDIA, Université
Libre de Bruxelles (ULB), Brussels, Belgium (2009)

17. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the
non-dominated set. Technical Report IMM-REP-1998-7, Institute of Mathematical
Modelling, Technical University of Denmark, Lyngby, Denmark (1998)



18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Per-
formance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7(2) (2003) 117–132

19. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1 (1976) 117–129

20. Varadharajan, T.K., Rajendran, C.: A multi-objective simulated-annealing algo-
rithm for scheduling in flowshops to minimize the makespan and total flowtime of
jobs. European Journal of Operational Research 167(3) (2005) 772 – 795

21. Paquete, L., Chiarandini, M., Stützle, T.: A study of local optima in the multi-
objective traveling salesman problem. Technical Report AIDA-02-07, Fachgebiet
Intellektik, Fachbereich Informatik, Technische Universität Darmstadt (2002)

22. Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective
combinatorial optimization. In Barichard, V., et al., eds.: Post-Conference Pro-
ceedings of MOPGP 2006. LNEMS. Springer (2008) In press.

23. Nawaz, M., Jr., E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. OMEGA 11(1) (1983) 91–95

24. Taillard, É.D.: Some efficient heuristic methods for the flow shop sequencing prob-
lem. European Journal of Operational Research 47(1) (1990) 65–74

25. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race
algorithm: Sampling design and iterative refinement. In Bartz-Beielstein, T., et al.,
eds.: 4th International Workshop on Hybrid Metaheuristics, Proceedings, HM 2007.
Volume 4771 of LNCS., Springer Verlag (2007) 108–122

26. Vallada, E., Ruiz, R., Minella, G.: Minimising total tardiness in the m-machine
flowshop problem: A review and evaluation of heuristics and metaheuristics. Com-
puters & Operations Research 35(4) (2008) 1350 – 1373

27. Taillard, É.D.: Benchmarks for basic scheduling problems. European Journal of
Operational Research 64(2) (1993) 278–285

28. Grunert da Fonseca, V., Fonseca, C.M., Hall, A.: Inferential performance assess-
ment of stochastic optimizers and the attainment function. In Zitzler, E., Deb, K.,
Thiele, L., Coello, C.C., Corne, D., eds.: Evolutionary Multi-criterion Optimiza-
tion (EMO 2001). Volume 1993 of Lecture Notes in Computer Science., Springer
Verlag, Berlin, Germany (2001) 213–225

29. López-Ibáñez, M., Paquete, L., Stützle, T.: Exploratory analysis of stochastic local
search algorithms in biobjective optimization. Technical Report TR/IRIDIA/2009-
015, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (May 2009)

30. Lust, T., Teghem, J.: Two-phase pareto local search for the biobjective traveling
salesman problem. Journal of Heuristics (2009) To appear.


