
Sonet Network Design Problems

Marie Pelleau

Brown University
Computer Science

115 Waterman Street
Providence, RI 02912

marie.pelleau@etu.univ-nantes.fr

Abstract. This report presents two problems related to the design of
optical telecommunication networks, namely the Synchronous Optical
Network Ring Assignment Problem and the Intra-ring Synchronous Op-
tical Network Design Problem. Theses network topology problems can be
represented as a graph partitioning with capacity constraints. Previous
works have described a mathematical model for these problems based
on the graph partitioning. We have used this model to compare and
implement, in Comet , several objective functions and metaheuristics.

1 Introduction

This report presents the work I have done during my internship at Brown Uni-
versity, as part of my Master 2 ORO. My advisors were Charlotte Truchet at
Université de Nantes and Pascal Van Hentenryck at Brown University. This
work dealt with real-world combinatorial optimization problems from the field
of network design. Two particular problems have been considered, both consist
in finding optical networks configurations in a particular network topology. The
objective is to minimize the cost of the configuration, while respecting some con-
straints expressing that the customers demand is satisfied. These problems have
been shown NP-hard and have already been solved by combinatorial optimiza-
tion techniques.

The goal of this internship was to re-implement the existing methods in
Comet , an up-to-date programming language dedicated at constraint program-
ming and combinatorial optimization, in order to reproduce the previous results.
In addition, we have proposed several refinements to these algorithms. With
these new components, we obtained similar results on the first problems and we
managed to improve the results on the second one.

This report is organized as follows. In the sequel of this section we introduce
the two problems we have worked on, and the local search techniques which
have been used to solve them. Then, in section 2, we introduce the models
in a constrained optimization format for the two problems. We then present
the previous works on SRAP and IDP in section 3. Section 4 describes the
key ingredients necessary to implement the local search algorithms. Finally, the
results are shown in Section 5.

1.1 Optical networks topologies

During the last few years the number of internet based application users has
exponentially increased, and so has the demand for bandwidth. To enable fast
transmission of large quantities of data, the fiber optic technology in telecom-
munication is the current solution.

The Synchronous Optical NETwork (SONET) in North America and Syn-
chronous Digital Hierarchy (SDH) in Europe and Japan are the standard designs
for fiber optics networks. They have a ring-based topology, in other words, they
are a collection of rings.

Rings Each customer is connected to one or more rings, and can send, receive
and relay messages using an add-drop-multiplexer (ADM). There are two bidi-
rectional links connecting each customer to his neighboring customers on the
ring. In a bidirectional ring the traffic between two nodes can be sent clockwise
or counterclockwise. This topology allows an enhanced survivability of the net-
work, specifically if a failure occurs on a link, the traffic originally transmitted
on this link will be sent on the surviving part of the ring. The volume traffic
on any ring is limited by the link capacity, called B. The cost of this kind of
network is defined by the cost of the different components used in it.

There are different ways to represent a network. In this report, we consider
two network topologies described by R. Aringhieri and M. Dell’Amico in 2005
in [2]. In both topologies the goal is to minimize the cost of the network while
guaranteeing that the customers’ demands, in term of bandwidth, are satisfied.

First topology In the first topology, each customer is connected to exactly
one ring. All of these local rings are connected with a device called digital cross
connector (DXC) to a special ring, called the federal ring. The traffic between
two rings is transmitted over this special ring. Like the other rings, the federal
ring is limited by the capacity B. Because DXCs are so much more expensive
than ADMs we want to have the smallest possible number of them. As there is a
one-to-one relationship between the ring and the DXC, minimizing the number of
rings is equivalent to minimizing the number of DXCs. The problem associated to
this topology is called SONET Ring Assignment Problem (SRAP) with capacity

constraint. Figure 1 shows an example of this topology.

Second topology In the second topology, customers can be connected to more
than one ring. If two customers want to communicate, they have to be connected
to the same ring. In this case, the DXC are no longer needed and neither is the
federal ring. However there are more ADM used than in the first topology. In this
case, the most expensive component is the ADM although its price has signifi-
cantly dropped over the past few years. It is important, in this topology, to have
the smallest numbers of ADMs. This problem is called Intra-ring Synchronous

Optical Network Design Problem (IDP). The figure 2 illustrates this topology.

Fig. 1. A SONET network with DXC.

Fig. 2. A SONET network without DXC.

Both of these problems are NP-hard (see O. Goldschmidt, A. Laugier and
E. Olinick in 2003, [6], and O. Goldschmidt, D. Hochbaum, A. Levin and E.
Olinick in 2003, [7] for details). On such problems, the field of combinatorial
optimization provide efficient solving tools.

1.2 Brief introduction of Local Search

Real-world combinatorial optimization problems are extremely computationally
challenging. No single approach is likely to be effective on all problems, or even
on all instances of a single problem. Designing efficient methods to solve such
problems is a very active research area.

Principles Local search is a metaheuristic based on iterative improvement of
an objective function. It has been proved very efficient on many combinatorial
optimization problems. It can be used on problems which formulated either
as mere optimization problems, or as constrained optimization problems where
the goal is to optimize an objective function while respecting some constraints.
Local search algorithms performs local moves in the space of candidate solutions,
called the search space, trying to improve the objective function, until a solution
deemed optimal is found or a time bound is reached. Defining the neighborhood
graph and the method to explore it are two of the key ingredients of local search
algorithms.

The approach for solving combinatorial optimization problems with local
search is very different from the systematic tree search of constraint and integer
programming. Local search belongs to the family of metaheuristic algorithms,
which are incomplete by nature. Hence, it cannot prove optimality. However on
many problems, it will isolate a optimal or high-quality solution in a very short
time. Local search sacrifices optimality guarantees to performance.

Basic algorithm A local search algorithm starts from a candidate solution and
then iteratively moves to a neighboring solution. This is only possible if a neigh-
borhood relation is defined on the search space. Typically, for every candidate
solution, we define a subset of the search space to be the neighborhood. Moves
are performed from neighbors to neighbors, hence the name local search. The
basic principle is then to choose among the neighbors the one with the best value
for the objective function. The problem is then that the algorithm will be stuck
in local optima. Metaheuristics, such as Tabu Search, are added to avoid this. In
Tabu Search, the last t visited configurations are left out of the search (t being
a parameter of the algorithm) : this ensures that the algorithm can escape local
optima, at least at order t.

The Algortihm 1 illustrates the Tabu Search in pseudo-code.
Termination of local search can be based on a time bound. Another common

choice is to terminate when the best solution found by the algorithm has not been
improved in a given number of iterations. Local search algorithms are typically
incomplete algorithms, as the search may stop even if the best solution found by

Choose or construct an initial solution S0
S ← S0

S∗ ← S0

bestV alue← objV alue(S0)
T ← ∅
while Terminaison criterion not satisfied do

Choose S′ in the neighborhood of S which minimize the objective
S ← S′

if objV alue(S) < bestV alue then
S∗ ← S

bestV alue← objV alue(S)
end

Record tabu for the current move in T (delete oldest entry if necessary)
end

Algorithm 1: Tabu Search

the algorithm is not optimal. This can happen even if termination is due to the
impossibility of improving the solution, as the optimal solution can lie far from
the neighborhood of the solutions crossed by the algorithms.

Local search is particularly appropriate for large-scale problems involving
thousands of decision variables. It is also efficient in many optimization applica-
tions where systematic search techniques are less effective.

COMET Comet is an object-oriented language created by Pascal Van Hen-
tenryck and Laurent Michel. It has a constraint-based architecture that makes
it easy to use when implementing local search algorithms, and more important,
constraint-based local search algorithms (see [1] for details).

Moreover, it has a rich modeling language, including invariants, and a rich
constraint language featuring numerical, logical and combinatorial constraints.
Constraints and objective functions are differentiable objects maintaining the
properties used to direct the graph exploration. The constraints maintain their
violations and the objectives their evaluation. One of its most important partic-
ularity, is that differentiable objects can be queried to determine incrementally
the impact of local moves on their properties.

2 Models

The models for these problems are based on graphs. Given an undirected graph
G = (V,E), V = {1, . . . , n}, the set of nodes represent the customers and E,
the set of edges, stand for the customers’ traffic demands. A communication
between two customers u and v correspond to the weighted edge (u, v) in the
graph, where the weight duv is the fixed traffic demand. Note that duv = dvu,
and that duu = 0.

2.1 SRAP

The SRAP problem consists in assigning each customer to a ring. This is modeled
by a decomposition of the set of nodes V into a partition, each subset of the
partition representing a particular ring. Assigning a node to a subset of the
partition in the model is then equivalent to assigning a customer to a ring.

Let V1, V2, . . . , Vk be a partitioning of V in k subsets. Each subset of the
partition corresponds to a ring, in other words, each customer in the subset Vi

is assigned to the i-th local ring. As each customer is connected with an ADM
to one and only one ring, and each local ring is connected to the federal ring
with a DXC, there are exactly |V | AMD and k DXC used in the corresponding
SRAP network.

Hence, minimizing the number of rings is equivalent to minimizing k subject
to the following constraints :

∑

u∈Vi

∑

v∈V,v 6=u

duv ≤ B, ∀i = 1, . . . , k (1)

k−1
∑

i=1

k
∑

j=i+1

∑

u∈Vi

∑

v∈Vj

duv ≤ B (2)

Constraint (1) imposes that the total traffic routed on each ring does not exceed
the capacity B. In other words, for a given ring i, it forces the total traffic
demands of all the customers connected to this ring, to be lower or equal to the
bandwidth. Constraint (2) forces the load of federal ring to be less than or equal
to B. To do so, it computes the sum of the traffic demands between all the pairs
of customers connected to different rings.

Figure 3 illustrates the relation between the node partitioning model and the
first topology SRAP. We can see that, because the nodes 1, 3, 5 and 6 are in
the same partition, they are connected to the same ring. Similarly, the nodes 2,
4 and 7 are on the same ring.

For this problem we can easily compute a lower bound klb. In fact, we want
to know the minimum number of partitions needed to route all the traffic. It
seems logical to sum all the traffic demands of the graph and divided it by the
bandwidth B. Moreover, we cannot have fractional part of partition, that is why
we take the upper round of this fraction.

klb =

n−1
∑

u=1

n
∑

v=u+1

duv

B

2.2 IDP

Contrarily to the SRAP problem, there is no need to assign each customer to
a particular ring because customers can be connected to several rings. Here the

Fig. 3. Relation between the node partitioning and the network topology.

model is based on a partition of the edges of the graph, where a subset of the
partition corresponds to a ring.

Let E1, E2, . . . , Ek be a partitioning of E in k subsets and Nodes(Ei) be the
set of terminal nodes of the edges in Ei. Each subset of the partition corresponds
to a ring, in other words, each customer in Nodes(Ei) is linked to the i-th ring.

In the corresponding IDP network, there are
∑k

i=1 |Nodes(Ei)| ADM and no
DXC.

Hence, minimizing the number of ADMs is equivalent to minimizing
∑k

i=1 |Nodes(Ei)| subject to,

∑

(u,v)∈Ei

duv ≤ B, ∀i = 1, . . . , k (3)

Constraint (3) imposes that the traffic in each ring does not exceed the capacity
B.

Figure 4 shows the relation between the edge partitioning and the second
topology. If all the edges of a node are in the same partition, this node will only
be connected to a ring. We can see, for example, the node 4 has all its edges in
the same partition, because of that, the node 4 is connected to only one ring.
On the opposite, the edges of the node 2 are in two different partitions, so it is
logically, connected to two rings.

The SRAP problem can be seen as a node partitioning problem, whereas
IDP, as an edge partitioning problem for the graph described above, subject to
capacity constraints. These graph partitioning problems have been introduced
in [6] and [7].

Fig. 4. Relation between the edge partitioning and the network topology.

3 Related work

These two problems have been well studied. It has been proven that they are
both NP-hard ([6], [7]).

3.1 Greedy algorithms for SRAP

In [6] the SRAP problem is considered. They propose three greedy algorithms
with different heuristics, the edge-based, the cut-based and the node-based. The
first two algorithms start by assigning each node to a different ring. At each
iteration they reduce the number of rings by merging two rings Vi and Vj if
Vi ∪ Vj is a feasible ring for the capacity constraint. In the edge-based heuristic,
the two rings with the maximum weight edge are merged. While in the cut-based
heuristic, the two rings with the maximum total weight of the edges with one
endpoint in each of them, are merged. Algorithm 2 and 3 show the pseudo code
for the edge-based and cut-based heuristics.

Given a value k, the node-based heuristic, starts by randomly assigning a
node to each of the k rings. At each iteration it first chooses the ring Vi with
the largest unused capacity, then the unassigned node u with the largest traffic
with the nodes in Vi. Finally it adds u to the ring Vi disregarding the capacity
constraint. The pseudo-code for this heuristic is shown on algorithm 4.
The node-based heuristic is run ten times. At each run, if a feasible solution is
found, the corresponding value for k is kept and the next run takes k − 1 as an
input. The idea behind this is to try and improve the objective at each run.

To test these heuristics, the authors have randomly generated 160 instances1.
The edge-based, and the cut-based are run first. If they have found a feasible
solution and obtained a value for k, the node-based is then run with as input

1 These instances are available at www.seas.smu.edu/~olinick/srap/GRAPHS.tar.

F ← E

∀v ∈ N ring(v)← v

while F 6= ∅ do
Choose a maximum capacity edge (u, v) ∈ F

i← ring(u), j ← ring(v)
if Vi ∪ Vj is a feasible ring then
∀v ∈ Vj ring(v)← i

F ← F\{(x, y)|ring(x) = i, ring(y) = j}
else

F ← F\{(u, v)}
end

end

Algorithm 2: Edge-Based Heuristic

L← ∅
∀v ∈ N ring(v)← v, L← L ∪ {ring(v)}
repeat

max← , M ← ∅
for {s, t|s 6= t} ∈ L do

if Vs ∪ Vt is a feasible ring then
Est ← {{(u, v)}|ring(u) = s, ring(v) = t}

cut←
∑

(u,v)∈Est

duv

if cut > max then
max← cut, M ← {st}

end

end

end

if M 6= ∅ then
Merge M

end

until No ring can be merged (M = ∅) ;

Algorithm 3: Cut-Based Heuristic

U ← V

for i = 1 to k do
Choose u ∈ U, Vi ← u, U ← U\{u}

end

while U 6= ∅ do
Choose a minimum capacity ring Vi

Choose u ∈ U to maximize
∑

{v∈Vi}

duv

ring(u)← Vi, U ← U\{u}
end

Algorithm 4: Node-Based Heuristic

the smallest value obtained for k. If they have not, the node-based heuristic has
for input a random value from the range [klb, |V |] where klb is the lower bound,
described previously.

3.2 MIP and Branch and Cut for IDP

A special case of the IDP problem where all the edges have the same weight, is
studied in [7]. This special case is called the K-Edge-Partitioning problem. Given
a simple undirected graph G = (V,E) and a value k < |E|, we want to find a
partitioning of E, {E1, E2, . . . El} such that ∀i ∈ {1, . . . , l}, |Ei| ≤ k. The au-
thors present two linear-time-approximation algorithms with fixed performance
guarantee.

Y. Lee, H. Sherali, J. Han and S. Kim in 2000 ([8]), have studied the IDP
problem with an additional constraint such that for each ring i, |Nodes(Ei)| ≤ R.
The authors present a mixed-integer programming model for the problem, and
develop a branch-and-cut algorithm. They also introduce a heuristic to generate
an initial feasible solution, and another one to improve the initial solution. To
initialize a ring, the heuristic first, adds the node u with the maximum graph
degree, with respect to unassigned edges, and then adds to the partition the
edge [u, v] such that the graph degree of v is maximum. It iteratively increases
the partition by choosing a node such that the total traffic does not exceed
the limit B. A set of 40 instances is generated to test these heuristics and the
branch-and-cut.

3.3 Local Search for SRAP and IDP

More recently, in [2], these two problems have been studied. The authors have
developed different metaheuristic algorithms, all based on the Tabu Search. The
metaheuristics are the Basic Tabu Search (BTS), two versions of the Path Re-

linking (PR1, PR2), the eXploring Tabu Search (XTS), the Scatter Search (SS),
and the Diversification by Multiple Neighborhoods (DMN). These local search
algorithms are detailed in section 4.4.

Previously, we saw that with local search it is necessary to define a neigh-
borhood to choose the next solution. The one they used, is the same for all of
their metaheuristics. It tries to assign an item x from a partition, P1, to another
partition, P2. The authors also consider the neighborhood obtained by swapping
two items, x and y, from two different partitions, P1 and P2. But instead of try-
ing all the pairs of items, it will only tries to swap the two items if the resulting
solution of the assignment of x to the partition P2 is unfeasible.

In order to compute a starting solution for the IDP problem, the authors
describe four different heuristics. The first heuristic introduced in [2] ordered
the edges by decreasing weight, at each iteration it tries to assign the edge with
the biggest weight which is not already assigned, to the ring with the smallest
residual capacity regarding to capacity constraint. If no assignment is possible,
the current edge is assigned to a new ring. The second one, sorts the edges by
increasing weight, and tries to assign the current edge to the current ring if the

capacity constraint is respected, otherwise the ring is no longer considered and
a new ring is initialized with the current edge.

The two other methods described in [2] are based on the idea that to save
ADMs a good solutions should have very dense rings. They are both constructive
greedy. In the third one, Clique-BF, it iteratively selects a clique of unassigned
edges with the total traffic less or equal to B. Then assigns it to the ring that
minimizes the residual capacity and, if possible, preserves the feasibility. If both
of them are impossible it places it to a new ring. Algorithm 5 shows the pseudo
code associated to this heuristic. The last algorithm, Cycle-BF, is like the pre-
vious method, but instead of looking for a clique at each iteration it try to find
a cycle with as many cords as possible.

U ← E

r ← 0
while U 6= ∅ do

Heuristicaly find a clique C ⊂ U such that weight(C) ≤ B

j ← min{B − weight(Ei)− weight(C) : i ∈
{1, . . . , k}, B − weight(Ei)− weight(C) ≥ 0} if j = null then

r + +
j ← r

end

Ej ← Ej ∪ C

U ← U\C
end

Algorithm 5: Clique-BF

They also introduce four objective functions, one of which depends on the
current and the next status of the search. Let z0 be the basic objective function
counting the number of rings of a solution for SRAP, and the total number of
ADMs for IDP, and let BN be the highest load of a ring in the current solution.

z1 = z0 + max{0, BN − B},

z2 = z1 +

{

α · RingLoad(r) if the last move has created a new ring r,

0 otherwise

z3 = z0 · B + BN

z4 =

z4a = z0 · B + BN(= z3) (a) : from feasible to feasible
z4b = (z0 + 1)BN (b) : from feasible to unfeasible
z4c = z0B (c) : from unfeasible to feasible
z4d = βz0BN (d) : from unfeasible to unfeasible

with α ≥ 1 and β ≥ 2, two fixed parameters, and where RingLoad(r) is the load
of the ring r.

The first function z1 minimizes the basic function z0. As BN > B, it also
penalizes the unfeasible solutions. In addition to the penalty for the unfeasible

solutions, z2 penalizes the moves that increase the number of rings. Function
z3 encourages solutions with small z0, while among all the solutions with the
same value of z0, it prefers the ones in which the rings have the same loads. The
last objective function z4 is an adapting technique that modifies the evaluation
according to the status of the search. It is a variable objective function having
different expressions for different transitions from the current status to the next
one.

4 Our work

In this section we present the different tools needed to implement the Constraints
Based Local Search algorithms for SRAP and IDP. First we introduce the start-
ing solution, then the neighborhoods and the objectives functions. Finally we
present the different local search algorithms.

4.1 Starting solution

The starting solution, for the SRAP, can be generated with one of the three
heuristics presented in [6], or like in [2] where each node is assigned to a different
ring. And for the IDP, it can be generated with the heuristic in [8] or with one
of the four heuristics described in [2].

The starting solution can be a random solution, like in most of the generic
local search. It corresponds, for these problems, to a solution where all the items,
nodes for SRAP or edges for IDP, are randomly assigned to a partition. On
the opposite, the starting solution can have all the items assigned to the same
partition.

Another way to do it is to compute the lower bound klb (described in section
3) and randomly assign all the items to exactly klb partitions. The local search
will then reduce the violations if the starting solution is not feasible.

We have implemented and tested all these starting solutions. Based on our
experiments, the best starting solution for both of the problems is the one where
all the items are assigned to the same partition. Note that this solution is cer-
tainly unfeasible as all the traffic is on only one ring.

4.2 Neighborhoods

The two neighborhoods used are basic. Given a solution for a partitioning prob-
lem, they can be obtained either by moving an item form a partition to another
(including a new one) or by swapping two items assigned to two different parti-
tions. For both of these moves, the capacity constraints is ignored, and among
all the possible moves, the one minimizing the most the objective function is
chosen. Like in [2], we allow to construct unfeasible solutions. We have discussed
and tested different variants of the first neighborhood.

Based on the fact that for the SRAP problem we try to minimize the number
of rings, the first variant tries to reduce the number of partition by emptying

the partition with the lowest load. More precisely, it randomly picks a customer
in the m partitions with the lowest load, with m a fixed parameter. We did not
try this neighborhood because of the obvious problem that it will decrease the
number of rings until it reaches the value 1.

To avoid this problem we decide to pick an item from the most violated
partition and assign it to another one with no violations or to a new one. Unfor-
tunately this neighborhood did not work, because it only considers the partitions
and in the case of the SRAP problem, the federal ring is not a partition. In other
words, it decreases the violations on all the local rings but not the ones on the
federal ring.

So in addition to the previous neighborhood, if none of the partitions are
violated, the new one considers all the items. This one works well, but takes a
long time to compute.

We also designed a neighborhood dedicated to the IDP problem. In this case
we try to minimize the number of ADMs, in other words, we want to minimize
the number of rings on which a single customer is connected. In this variant,
we pick the customer which is connected to the higher number of rings. Then
among all the edges for which this customer is one of the endpoints, we choose
the one minimizing the objective function. This neighborhood did not work well
because we reason on the nodes while the partitioning is on the edges.

After all these attempts we decided to stop trying to be smart and just choose
to assign the item to the partition that minimize the most the objective function.
In the end, this method appeared to work better.

4.3 Objective function

We have compared the four objectives functions describe in [2] (see Section 3)
to a new one we have defined : z5.

z5 = z0 +
∑

p ∈ partitions

violations(p)

where

partitions are all the rings (in the case of the SRAP problem the federal ring

is also included),

violations(p) =

{

capacity(p) − B if the load of p exceed B

0 otherwise.

This objective function minimizes the basic function z0 and penalizes the
unfeasible solutions. As z0 is much smaller than the load of a ring, a feasible
solution with 4 rings will be preferred to an unfeasible solution with 3 rings.

4.4 Local Search

Beside of the Local Search algorithms introduced in [2], we have proposed a
different Diversification by Multiple Neighborhoods (DMN2). In this section we
briefly recall the algorithms described in [2], then we present our variant.

The Tabu Search introduced by F. Glover and M. Laguna in 1997 in [4], like
all the local search moves from? one solution to another one in its neighborhood.
To avoid being stuck in a local optimum, the last t moves are marked tabu and
left out of the search, hence the name of Tabu search.

The Path Relinking PR1 has been introduced by Glover in 1997 in [5]. It
keeps in memory, the best solution found called elite solution. After a certain
number of non improving iteration, the local search tries to find a path in the
search space between the current solution and the elite. In order to reduce the
distance, d, between the current and the elite solution, it will applies M moves
; where M is a certain percentage of the distance d.

In the second version of the Path Relinking, PR2, instead of keeping just one
solution, it keeps a set of elite solutions of length ES. Like in the first version,
it tries to find a path between the current solution and each of the ES elite
solutions. It generates ES new solutions and continues the search with the best
of the ES new solutions.

The eXploring Tabu Search introduced by M. Dell’Amico and M. Trubian in
1998 ([3]), jumps in the solution space based on long term memory information.
At each iteration, it applies the best move and keeps in memory the second best
one. After a fixed number of non improving iterations, the search goes back in
the previous configuration associate to the best second move and applies it.

In the Scatter Search algorithm (see [5]), a small population of solutions,
called Reference Set, evolves through combination of its solutions. At each it-
eration, it combines different subsets of the Reference Set to construct a new
solution. More precisely, it assigns, in the new solution, the item i to the par-
tition p, if the score of the pair (i, r) is the biggest among all the solutions in
the subset considered. Note that for the Scatter Search approach, the objective
functions based on the concept of ’move’ can not be used. So for this algorithm,
we only consider the functions z1, z5 and a special version of z4 :

z4 =

{

z4a = z0 · B + BN if the solution is feasible
z4d = βz0BN otherwise

The Diversification by Multiple Neighborhoods metaheuristic proposed in
[2], has some similarity with the Variable Neighborhood Search. After a series of
consecutive non improving iterations, the search empties a partition by moving
all its items to another partition, disregarding the capacity constraint and locally
minimizing the objective function.

The metaheuristic we have proposed, called DM2, differs from DMN on the
diversification method. When the search needs to be diversified, it randomly
chooses among three diversification methods (d1, d2, d3). The first method, d1,
is the diversification used in DMN. The second one, d2, randomly assigns all the
items to a ring. Finally, d3 randomly chooses a number m in the range [1, k],
where k is the number of rings, and applies m moves.

Our general algorithm starts with a solution where all the items are in the same
partition. Then applies one of the local search algorithms described before. If
the solution returned by the local search is feasible but with the objective value
greater than the lower bound klb, it empties one partition by randomly assign
all its items to another. Then run once again the local search until it founds a
solution with the objective value equals to klb or until the time limit is exceeded.

5 Results

The objectives functions and the metaheuristics, respectively described in Sec-
tion 4.3 and Section 4.4, have been coded in Comet and tested on Intel based,
dual-core, dual processor, Dell Poweredge 1855 blade server, running under
Linux. The instances used are from the literature.

5.1 Benchmark

To test the algorithms, we used two sets of instances. The first one has been
introduced in [6]. They have generated 80 geometric instances, based on the fact
that customers tend to communicate more with their close neighbors, and 80
random instances. These subsets have both 40 low-demand instances, with a
ring capacity B = 155 Mbs, and 40 high-demand instances, where B = 622 Mbs.
The traffic demand between two customers, u and v, is determined by a discrete
uniform random variable corresponding to the the number of T1 lines required for
the anticipated volume of traffic between u and v. A T1 line has an approximately
capacity of 1.5 Mbs. The number of T1 lines is randomly pick in the interval
[3, 7], for low-demand cases, while it is selected from the range [11, 17], for the
high-demand cases. The graphs generated have |V | ∈ {15, 25, 30, 50}. In the 160
instances, generated by O. Goldschmidt, A. Laugier and E. Olinick in 2003, 42
have been proven to be un feasible by R. Aringhieri and M. Dell’Amico using
CPLEX 8.0 (see [2]).

The second set of instances has been presented in [8]. They have generated
40 instances with a ring capacity B = 48 T1 lines and the number of T1 lines
required for the traffic between two customers has been choose in the interval
[1, 30]. The graphs considered have |V | ∈ {15, 20, 25} and |E| = {30, 35}. Most
of ([2]), the instances in this set are unfeasible.

Note that all the instances can be feasible for the IDP problem, we always
could assign each demand to a different partition.

5.2 Computational Results

We now describe the results obtained for SRAP and IDP on the above two
benchmark sets, by the algorithms Basic Tabu Search (BTS), Path Relinking
(PR1, PR2), eXploring Tabu Search (XTS), Scatter Search (SS), Diversification
by Multiple Neighborhoods (DMN, DMN2) (see Section 4.4 for details). For each

algorithm we consider the five objective functions of Section 4.3, but for the SS
we use the three functions described in Section 4.4.

We gave a time limit of 5 minutes to each run of an algorithm, even if the
average time to find the best solution is less than 1 minute. Obviously, the
algorithm terminates if the current best solution found is equal to the lower
bound klb.

Figures 5 and 6 show the number of optimal or high-quality solutions found
by the algorithms using the five objective functions, for the IDP and the SRAP
problems. Remind that objective functions z2 and z3 cannot be applied with the
Scatter Search.

Fig. 5. Results for IDP.

The figure 5 only shows for each algorithm the number of optimal solutions
found with the objective function z5. With the other objectives, the number
of optimal solutions found is zero, that is why we did not show them on the
diagram. We discussed about it, and came to the conclusion that maybe the
other functions do not enough discriminate the different solutions. With our
implementation, it also takes more time to compute their value with the IDP
problem, because of that, the search loses a lot of time at each iterations, and
explores a much more smaller part of the search space than with the function z5.
For this problem, we can see that the eXploring Tabu Search does not give good
results. This can be due to a too early ”backtracking”. As we saw previously,

after a fixed number of consecutive non improving iterations the search goes back
in a previous configuration and applies the second best move. In the case of the
IDP problem, it could take much m ore iteration to improve the value of the
objective function than for the SRAP problem. Indeed, the value of the objective
function depends on the number of partition in which a customer belongs, while
an iteration moves only one edge ; and to reduce its value by only one it could
need to move several edges.

Fig. 6. Results for SRAP.

Figure 6 shows for each algorithm and each objective function, the number
of instances for which the search has found an optimal solution, i.e. a solution
with klb partitions (in dark gray on the diagram) ; the number of those for which
the best feasible solution found has klb + 1 partitions (in gray) ; and, in light
gray, the number of instances for which it has found a feasible solution with
more than klb + 1 partitions. From the objective functions perspective, we can
see that z4, supposedly the most improve one, is not that good in the Comet

implementation. However the one we add, z5, is always slightly better than the
other ones.

Against all odds, the Basic Tabu Search on all the objective functions, is as
good as the other search algorithms. Still on the local search algorithms, we can
see that the second version of the Diversification by Multiple Neighborhoods, is
much more better than the first one with the objectives z3 and z4.

The details of our results are shown in the appendix B.

6 Conclusion

The purpose of this internship was to reproduce with Comet the results ob-
tained, for the SONET Design Problems, by R. Aringhieri and M. DellAmico in
2005 (see [2] for details).

To do so, we have implemented in Comet the algorithms and the objective
functions described in this report. We found relevant to add a variant of one
of their local search algorithm and a new objective function. Unfortunately, we
can not exactly compare our results to theirs because the set of 230 instances
they have generated is not available. However, for the IDP problem, we obtained
better results for 15 instances over the 160 compared, and similar results for the
other instances. It would be interesting to have all the instances and the results
to fully compare our results.

Based only on our results, we can say that our objective function implemented
in Comet founds a bit more of good solutions than theirs. There is still some
work to do in order to know if our results are really better than theirs on the
complete set of instances.

Acknowledgments

I would like to thank all the persons that made this internship possible. First of
all, Charlotte Truchet for helping me finding it, and Pascal Van Hentenryck for
accepting me as an intern ; and for being both my advisors.

All my teachers, especially Xavier Gandibleux, Laurent Granvilliers, An-
thony Przybylski, Irena Rusu, Christophe Jermann, Jean-Jacques Loiseau, Nico-
las Beldiceanu.

All the administrative staff, Lori Agresti, Lauren Clarke, Janet Eager, JaneM-
cllmail, Dorinda Moulton, at Brown ; and Christine Brunet, Isabelle Condette,
Martine Coignac, Catherine Fourny, Diana Gaudin, Brigitte Misser, Anne-Franoise
Quin, at Nantes.

Carleton Coffrin, Justin Yip, Lucile Robin and Olya Ohrimenko the best
optimization students, for all the fun and the optimization lab meetings.

Dana O’Malley, Eva Cohen and Jack Spencer for being great roommates.

Natalie McGarvey, Alice Costas, Alison Nguyen, Hilary Merzbacher, Jhon
Clavijo, Carlos V, the Art people ; Aggeliki Tsoli, Wenjin Zhou, Fabio Vandin,
Dan Grollman, Ariane Buffum, Anna Ritz, Yuri Malitsky, Stu Black, David
McClosky, Micha Elsner, Serdar Kadioglu, Jan Bandouch, Laura Sevilla Lara,
Eric Sodomka, Kevin Tierney, the CS guys for all the fun. And all the wonderful
people that I met there.

A special thank to my parents, my siblings and my boyfriend for being
around.

References

1. Van Hentenryck, Pascal and Michel, Laurent Constraint-Based Local Search The
MIT Press (2005)

2. Aringhieri, Roberto, Dell’Amico, Mauro : Comparing Metaheuristic Algorithms for
Sonet Network Design Problems Journal of Heuristics 11, 35–57 (2005)

3. Dell’Amico, Mauro, Trubian, Marco : Solution of Large Weighted Equicut Problems
European J. Oper. Res 106(2/3), 500–521 (1998)

4. Glover, Fred, Laguna, Manuel : Tabu Search Boston. Kluwer Academic Publishers
(1997)

5. Glover, Fred : A Template for Scatter Search and Path Relinking Lecture Notes in
Computer Science 1363, 13–54 (1997)

6. Goldschmidt, Olivier, Laugier, Alexandre, Olinick, Eli V.: SONET/SDH Ring As-
signment with Capacity Constraints Discrete Appl. Math. 129, 99–128 (2003)

7. Goldschmidt, Olivier, Hochbaum, Dorit S., Levin, Asaf, Olinick, Eli V.: The Sonet
Edge-Partition Problem Networks 41, 3–23 (2003)

8. Lee, Youngho, Sherali, Hanif D., Han, Junghee, Kim, Seong-in : A Branch-and-Cut
Algorithm for Solving an Intraring Synchronous Optical Network Design Problem
Networks 35, 223–232 (2000)

A COMET

In this appendix, some examples of Comet will be shown. All of them use the
local search library cotls.

The Statement 1 shows the neighborhood used for the objectives functions z1,
z2, z3, z5. The first line define and initialize the NeighborSelector used, as we
want to minimize the objective, we use the MinNeighborSelector . As describe
in the section 4.2 we first choose a partition p and a node x such as x is not in
the partition p, the move is not taboo, and that the assignment minimize the
most the objective (z.getAssignDelta(x, p)). From line 9 to 12, the Closure

is described, the action that will be done if the assignment is choose. If this move
generate a non-feasible solution, line 14, it choose another node y to swap with
x such as it minimize the objective (z.getSwapDelta(x, y)). Like at the lines
9-12, the lines 18-22 define the Closure, the action that will be done if the swap
is choose.

Statement 1 Neighborhood for objective functions z1, z2, z3, z5

1 MinNeighborSelector NS();

2 var{int} violations = S.violations();

3 range partitions = P.getPartitions();

4 range items = P.getItems();

5
6 selectMin(p in partitions, x in items :

7 tabu[x, p] < it && p != P.getPartition(x))(z.getAssignDelta(x, p)) {

8
9 neighbor(z.getAssignDelta(x, p), NS) {

10 tabu[x, P.getPartition(x)] = it + tbl;

11 P.setPartition(x, p);

12 }

13
14 if (violations + S.getAssignDelta(x, p) > 0) {

15 selectMin(y in P.getItemsPartition(p) :

16 tabu[y, P.getPartition(x)] < it) (z.getSwapDelta(x, y)) {

17
18 neighbor(z.getSwapDelta(x, y), NS) {

19 tabu[x, P.getPartition(x)] = it + tbl;

20 tabu[y, p] = it + tbl;

21 P.swapPartition(x, y);

22 }

23 }

24 }

25 }

The Statement 2 illustrates the Tabu Search. The core of the search is at
line 23, when it chooses the next move. The function neighborhood(tabu, it,

tbl) has been introduce previously in Statement 1. This search tries to find
a feasible solution, if it does find one, it reduces the number of partitions by
one (lines 49-54) and continues the search until it reaches the lower bound or
until the time limit is exceeded. The Tabu Search incorporates a intensification
component. It returns to the best solution found so far if non improvement has
been taken place for a number of iterations. This intensification is located in
lines 36-37. It uses a variable solution to keep the best solution and a variable
stable to count the number of consecutive non improving iterations. It also
integrates a restarting component. If no feasible solution has been found after
a number of iterations the search restarts. Restarting prevents the search to be
trapped in a region of the search where there are no good solutions or where
good solutions are hard to reach. The restarting component is isolated in lines
38-44. It uses the delay mode to propagate the random assignments globally.

The last statement, Statement 3, shows how to make differentiable objects
in Comet . To illustrate our words, we use the basic objective function z0.
Firstly, the code in lines 10-20 is the constructor for this objective. It initializes
the incremental variable objective to the number of non empty partitions. If
the size of a partition changes, it will automatically update objective. The
functions getItems() and evaluation(), described in line 22 and 24, are just
two accessors.

The functions getAssignDelta(int v, int i) and getSwapDelta(int v1,

int v2) return the value between the value of the objective if we apply the
move considerated and the evaluation of the current solution. The fact of swap-
ping to nodes, will never reduce the number of rings. That is why the function
getSwapDelta(int v1, int v2) always return 0 (lines 39-41). On the other
hand, an assignment can reduce the number of rings. The function getAssignDelta(int

v, int i), at lines 26 to 37 compute the difference between the current solution
and the one generated by assigning the item v to the partition i.

Statement 2 Tabu Search
1 range items = S.getItems();

2 range partitions = P.getPartitions();

3
4 int tbl = tblStart; int it = 1;

5 int stable = 0; int stableLimit = 250000;

6 int restartFreq = 10000;

7
8 int tabu[items, partitions] = -1;

9
10 var{int} violations = S.violations();

11 var{int} evaluation = Z.evaluation();

12 int best = evaluation;

13
14 Solution solution(ls);

15 Solution bestSol(ls, new MinimizeIntValue(Z.evaluation()));

16
17 MinNeighborSelector NS();

18 int t0 = System.getWCTime();

19
20 while (evaluation > goal && System.getWCTime()-t0 < time) {

21 while (violations > 0 && System.getWCTime()-t0 < time) {

22
23 NS = neighborhood(tabu, it, tbl);

24
25 if(NS.hasMove())

26 call(NS.getMove());

27
28 if (evaluation < bestSol.getObjectiveValue().getInt())

29 bestSol = new Solution(ls, new MinimizeIntValue(evaluation));

30
31 if (evaluation < best) {

32 best = evaluation;

33 solution = new Solution(ls);

34 stable = 0;

35 } else {

36 if (stable == stableLimit) {

37 solution.restore(); stable = 0;

38 } else {

39 stable++;

40 if (it % restartFreq == 0) {

41 with delay(ls)

42 P.randomize();

43 }

44 }

45 it++;

46 }

47 }

48
49 if (evaluation > goal) {

50 tbl = tblStart; stable = 0;

51 reducePartitionsBy1(type);

52 if (evaluation < bestSol.getObjectiveValue().getInt())

53 bestSol = new Solution(ls, new MinimizeIntValue(evaluation));

54 }

55 }

56 bestSol.restore();

Statement 3 Objective function z0

1 class PartitionObjectiveZ0 implements PartitionObjective {

2 Solver<LS> ls;

3 PartitionLoadAndCutLoad p;

4
5 var{int} objective;

6
7 range nodes;

8 range partitions;

9
10 PartitionObjectiveZ0(Solver<LS> ls, PartitionLoadAndCutLoad p){

11 ls = ls;

12 p = p;

13
14 nodes = p.getNodes();

15 partitions = p.getPartitions();

16
17 objective = new var{int}(ls, 0..nodes.getSize());

18 var{int} partitionSize[i in partitions] = p.getPartitionSize(i);

19 objective <- card(setof(x in partitions)(partitionSize[x] > 0));

20 }

21
22 range getItems() {return p.getItems();}

23
24 var{int} evaluation() {return objective;}

25
26 int getAssignDelta(int v, int i){

27 int fromPartition = p.getPartition(v);

28 int toPartition = i;

29
30 if(fromPartition == toPartition)

31 return 0;

32
33 int fromPartitionSize = p.getPartitionSize(fromPartition);

34 int toPartitionSize = p.getPartitionSize(toPartition);

35
36 return min(0, fromPartitionSize-2) - min(0, toPartitionSize-1);

37 }

38
39 int getSwapDelta(int v1, int v2){

40 return 0;

41 }

42 }

B Additional Results

In this section, we report the results obtained with the algorithms. Each table
represents a set of 40 instances. Tables 1 and 2 show the results for, respectively,
the high-demand and the low-demand geometric graphs. Similarly tables 3 and
4 summarize the results for, high and low demand random graphs. The results
for the instances generated by Y. Lee, H. Sherali, J. Han and S. Kim in 2000
([8]), are illustrated in Table 5. The following notation is used in all the tables :

n is the number of nodes in the graph
m is the number of edges in the graph
T is the sum of all the demands in the graph
klb is the lower bound
SRAP is the number of rings obtained

if a feasible solution is not found, the cell will contained a dash ”-”
IDP is the the smallest number of ADM found.

Graph n m T klb SRAP IDP Graph n m T klb SRAP IDP
GH.15.1 15 43 921 2 3 19 GH.30.1 30 72 1504.5 3 3 33
GH.15.2 15 50 1032 2 3 18 GH.30.2 30 75 1636.5 3 4 35
GH.15.3 15 42 888 2 2 17 GH.30.3 30 78 1665 3 4 36
GH.15.4 15 75 1590 3 - 26 GH.30.4 30 72 1504.5 3 3 33
GH.15.5 15 76 1603.5 3 - 27 GH.30.5 30 73 1546.5 3 4 34
GH.15.6 15 41 871.5 2 2 16 GH.30.6 30 87 1824 3 - 37
GH.15.7 15 36 739.5 2 2 17 GH.30.7 30 94 1995 4 - 41
GH.15.8 15 52 1110 2 3 20 GH.30.8 30 92 1959 4 - 41
GH.15.9 15 48 1023 2 3 20 GH.30.9 30 75 1585.5 3 4 34
GH.15.10 15 39 790.5 2 2 16 GH.30.10 30 57 1207.5 2 3 33
GH.25.1 25 57 1191 2 3 28 GH.50.1 50 110 2310 4 5 57
GH.25.2 25 52 1069.5 2 2 27 GH.50.2 50 130 2716.5 5 - 59
GH.25.3 25 50 1032 2 2 27 GH.50.3 50 143 3007.5 5 - 64
GH.25.4 25 64 1323 3 3 28 GH.50.4 50 102 2140.5 4 4 54
GH.25.5 25 86 1830 3 - 35 GH.50.5 50 107 2226 4 5 55
GH.25.6 25 91 1878 4 - 35 GH.50.6 50 116 2427 4 5 57
GH.25.7 25 71 1515 3 4 32 GH.50.7 50 108 2275.5 4 5 56
GH.25.8 25 63 1326 3 3 28 GH.50.8 50 126 2697 5 - 59
GH.25.9 25 63 1309.5 3 3 29 GH.50.9 50 142 3046.5 5 - 63
GH.25.10 25 88 1824 3 - 35 GH.50.10 50 112 2428.5 4 - 59

Table 1: Results for High-Demand Geometric Graphs (B = 622 Mbs)

Graph n m T klb SRAP IDP Graph n m T klb SRAP IDP
GL.15.1 15 41 313.5 3 3 18 GL.30.1 30 57 424.5 3 4 34
GL.15.2 15 52 378 3 - 23 GL.30.2 30 57 436.5 3 4 34
GL.15.3 15 39 330 3 - 21 GL.30.3 30 57 408 3 4 33
GL.15.4 15 41 295.5 2 3 16 GL.30.4 30 54 397.5 3 4 34
GL.15.5 15 60 454.5 3 - 26 GL.30.5 30 58 391.5 3 3 33
GL.15.6 15 46 343.5 3 - 22 GL.30.6 30 54 405 3 4 32
GL.15.7 15 44 313.5 3 3 20 GL.30.7 30 57 412.5 3 4 34
GL.15.8 15 55 403.5 3 - 24 GL.30.8 30 60 430.5 3 4 34
GL.15.9 15 344 247.5 2 3 18 GL.30.9 30 57 418.5 3 4 32
GL.15.10 15 62 474 4 - 27 GL.30.10 30 76 567 4 - 38
GL.25.1 25 54 403.5 3 4 29 GL.50.1 50 85 616.5 4 5 54
GL.25.2 25 61 480 4 - 31 GL.50.2 50 92 729 5 - 57
GL.25.3 25 49 354 3 3 30 GL.50.3 50 98 757.5 5 - 58
GL.25.4 25 59 429 3 4 27 GL.50.4 50 84 649.5 5 6 55
GL.25.5 25 61 484.5 4 - 32 GL.50.5 50 90 708 5 - 54
GL.25.6 25 74 561 4 - 37 GL.50.6 50 92 694.5 5 - 58
GL.25.7 25 49 325.5 3 3 28 GL.50.7 50 85 601.5 4 5 52
GL.25.8 25 57 445.5 3 4 31 GL.50.8 50 86 646.5 5 5 51
GL.25.9 25 63 471 4 - 33 GL.50.9 50 63 499.5 4 4 50
GL.25.10 25 60 489 4 - 31 GL.50.10 50 87 652.5 5 - 57

Table 2: Results for Low-Demand Geometric Graphs (B = 622 Mbs)

Graph n m T klb SRAP IDP Graph n m T klb SRAP IDP
RH.15.1 15 48 990 2 3 21 RH.30.1 30 50 1056 2 3 35
RH.15.2 15 58 1203 2 - 23 RH.30.2 30 67 1402.5 3 4 41
RH.15.3 15 53 1113 2 3 22 RH.30.3 30 52 1096.5 2 3 34
RH.15.4 15 38 778.5 2 2 18 RH.30.4 30 56 1185 2 3 34
RH.15.5 15 47 955.5 2 3 21 RH.30.5 30 82 1656 3 - 44
RH.15.6 15 45 930 2 3 21 RH.30.6 30 70 1482 3 4 41
RH.15.7 15 39 804 2 2 19 RH.30.7 30 67 1404 3 4 41
RH.15.8 15 41 891 2 2 20 RH.30.8 30 62 1332 3 3 38
RH.15.9 15 43 909 2 3 21 RH.30.9 30 60 1288.5 3 3 39
RH.15.10 15 58 1197 2 - 22 RH.30.10 30 64 368 3 3 39
RH.25.1 25 62 1297.5 3 3 34 RH.50.1 50 81 1738.5 3 4 59
RH.25.2 25 53 1069.5 2 3 32 RH.50.2 50 68 1413 3 3 56
RH.25.3 25 52 1084.5 2 3 31 RH.50.3 50 89 1872 4 - 64
RH.25.4 25 61 1314 3 3 35 RH.50.4 50 89 1848 3 4 64
RH.25.5 25 67 1402.5 3 4 36 RH.50.5 50 66 1380 3 3 54
RH.25.6 25 62 1296 3 3 35 RH.50.6 50 67 1384.5 3 3 56
RH.25.7 25 51 1072.5 2 3 32 RH.50.7 50 90 1876.5 4 - 65
RH.25.8 25 66 1353 3 4 36 RH.50.8 50 80 1689 3 4 60
RH.25.9 25 41 831 2 2 28 RH.50.9 50 73 1573.5 3 4 57
RH.25.10 25 49 997.5 2 3 30 RH.50.10 50 86 1870.5 4 4 61

Table 3: Results for High-Demand Random Graphs (B = 155 Mbs)

Graph n m T klb SRAP IDP Graph n m T klb SRAP IDP
RL.15.1 15 32 250.5 2 3 20 RL.30.1 30 44 336 3 3 34
RL.15.2 15 43 340.5 3 - 23 RL.30.2 30 66 487.5 4 - 45
RL.15.3 15 28 208.5 2 2 19 RL.30.3 30 58 415.5 3 4 39
RL.15.4 15 38 288 2 3 21 RL.30.4 30 55 432 3 4 39
RL.15.5 15 40 310.5 3 - 22 RL.30.5 30 47 361.5 3 4 36
RL.15.6 15 34 249 2 3 20 RL.30.6 30 56 429 3 - 40
RL.15.7 15 51 405 3 - 26 RL.30.7 30 47 354 3 3 36
RL.15.8 15 36 265.5 2 3 20 RL.30.8 30 54 373.5 3 4 40
RL.15.9 15 32 252 2 3 19 RL.30.9 30 63 487.5 4 - 43
RL.15.10 15 40 298.5 2 3 22 RL.30.10 30 53 405 3 4 38
RL.25.1 25 51 364.5 3 4 33 RL.50.1 50 70 513 4 5 58
RL.25.2 25 42 325.5 3 3 30 RL.50.2 50 85 643.5 5 - 67
RL.25.3 25 54 438 3 - 36 RL.50.3 50 65 489 4 4 58
RL.25.4 25 50 358.5 3 4 35 RL.50.4 50 66 484.5 4 4 58
RL.25.5 25 44 345 3 4 32 RL.50.5 50 61 471 4 4 53
RL.25.6 25 51 364.5 3 4 34 RL.50.6 50 62 462 3 4 57
RL.25.7 25 49 373.5 3 4 33 RL.50.7 50 71 529.5 4 5 60
RL.25.8 25 40 303 2 3 28 RL.50.8 50 81 609 4 - 65
RL.25.9 25 47 372 3 4 33 RL.50.9 50 68 540 4 - 57
RL.25.10 25 48 361.5 3 4 32 RL.50.10 50 62 459 3 4 52

Table 4: Results for Low-Demand Random Graphs (B = 155 Mbs)

Graph n m T klb SRAP IDP Graph n m T klb SRAP IDP
LSHK.15.30.1 15 30 355.5 5 - 28 LSHK.20.35.1 20 35 348 5 - 30
LSHK.15.30.2 15 30 370.5 6 - 28 LSHK.20.35.2 20 35 463.5 7 - 35
LSHK.15.30.3 15 30 372 6 - 28 LSHK.20.35.3 20 35 340.5 5 - 32
LSHK.15.30.4 15 30 337.5 5 - 27 LSHK.20.35.4 20 35 323 6 - 34
LSHK.15.30.5 15 30 354 5 - 27 LSHK.20.35.5 20 35 315 5 - 31
LSHK.15.30.6 15 30 375 6 - 28 LSHK.20.35.6 20 35 322.5 5 - 30
LSHK.15.30.7 15 30 316.5 5 - 27 LSHK.20.35.7 20 35 361.5 6 - 33
LSHK.15.30.8 15 30 363 6 - 28 LSHK.20.35.8 20 35 3297 5 - 30
LSHK.15.30.9 15 30 279 4 - 25 LSHK.20.35.9 20 35 351 5 - 33
LSHK.15.30.10 15 30 285 4 - 26 LSHK.20.35.10 20 35 331.5 5 - 30
LSHK.20.30.1 20 30 360 5 - 32 LSHK.30.35.1 30 35 378 6 - 36
LSHK.20.30.2 20 30 304.5 5 - 29 LSHK.30.35.2 30 35 328.5 5 6 36
LSHK.20.30.3 20 30 340.5 5 - 29 LSHK.30.35.3 30 35 318 5 - 35
LSHK.20.30.4 20 30 385.5 6 - 33 LSHK.30.35.4 30 35 315 5 - 35
LSHK.20.30.5 20 30 364.5 6 - 30 LSHK.30.35.5 30 35 402 6 - 37
LSHK.20.30.6 20 30 324 5 - 31 LSHK.30.35.6 30 35 367.5 6 - 37
LSHK.20.30.7 20 30 357 5 - 32 LSHK.30.35.7 30 35 406.5 6 - 36
LSHK.20.30.8 20 30 304.5 5 - 28 LSHK.30.35.8 30 35 307.5 5 6 34
LSHK.20.30.9 20 30 297 5 - 30 LSHK.30.35.9 30 35 411 6 - 37
LSHK.20.30.10 20 30 279 4 - 29 LSHK.30.35.10 30 35 357 5 - 36

Table 5: Results for the second set of instances (B = 72 Mbs)

