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Abstract. We describe a two-phase resolution method to find a good
distribution of solutions along the Pareto front of the multi-objective
traveling salesman problem. The first phase consists in producing a num-
ber of supported solutions. The second phase explores the front to create
a better distributed set. This is done using a heuristic-selection mecha-
nism akin to a hyperheuristic which tries to choose a good heuristic from
a population of heuristics. The method can thus be applied to problems
other than the TSP.

1 Introduction

Multi-objective combinatorial optimization is present in a wide array of real-life
problems, for instance finance, logistics or sports (scheduling). Generally the
different objectives have to be considered simultaneously. The optimal solutions
are therefore ones for which there is no other solution which is better in all the
objectives at the same time. Knowing the whole set of optimal solutions is often
not necessary. However, having a good distribution of an approximation of this
set is useful for decision makers to perform informed choices.

As resolution methods try to get better results, they often become more
complicated, requiring expert knowledge to use them effectively. The hyper-
heuristic approach provides a high-level view of the problem. Its aim is to allow
the user to provide a number of different (simple) options to potentially solve a
problem and to find on its own which options are the best. Therefore complex
problems can be solved relatively easily by users who are not required to be
experts in the problem domain or in the resolution method used.

The traveling salesman problem (TSP) is a classic combinatorial problem
which has been extensively studied. Its objective is to find the shortest tour
passing only once through every location which has to be visited. Other than
transportation, this problem has applications in fields such as manufacturing
(drilling of holes in printed circuit boards). It is also an important sub-problem
of the vehicle routing problem.



The multi-objective version of the TSP is of interest because it represents
many practical situations, for example having to make a compromise between
travel time and cost of transportation.

To the best of our knowledge, hyper-heuristics have yet to be applied to the
TSP or its multi-objective variant.

In this paper we propose the use of a hyper-heuristic to “populate” the Pareto
front starting from a few solutions which are produced using a method which
is very computationally expensive when an exact resolution is used and still
remains expensive (but less so) with an approximate resolution.

In section 2 we describe the problem and provide a review of the current
literature. Section 3 is devoted to the presentation of our method and it is
assessed in section 4. Finally, this paper is concluded by a discussion of possible
improvements and areas of future research.

2 State of the Art

In this section we present the problem and the background needed for our pro-
posed method. We first define some terms and notions regarding multi-objective
combinatorial optimization. We then look at the TSP and give an overview to
heuristic search methods focusing more on hyperheuristics and low-level heuris-
tics which may be used for the TSP. Some quality metrics are also presented.

2.1 Multi-objective Combinatorial Optimization

Combinatorial optimization involves finding the best possible solution within
a set of discrete feasible solutions (Ehrgott and Gandibleux 2002). In multi-
objective combinatorial optimization (MOCO), two or more (conflicting) objec-
tives are considered. It is assumed that a solution which optimizes all objectives
does not exist. The aim is to find a set of efficient solutions, the definition of
which we give later on.

Considering p minimization objectives, a MOCO problem can be formulated
as:

min z(x) = Cx (1)

subject to Ax = b (2)

x ∈ {0, 1}n (3)

where x ∈ {0, 1}n are n decision variables xi, i ∈ {1, . . . , n}, C ∈ N
p×n are p ob-

jective functions Ck, k ∈ {1, . . . , p}, A ∈ N
m×n and b ∈ N

m×1 are m constraints
Aj = mj , j ∈ {1, . . . , m}, to which are associated a combinatorial problem struc-
ture.

Let X be the set of all feasible solutions of the problem in the decision space,
X = {x ∈ {0, 1}n|Ax = b}. Let Z = {z(x)|x ∈ X} be the feasible set in the
objective space.



Definition 1. Given two vectors u and v of equal cardinality p, u dominates

v if uk ≤ vk, ∀k ∈ {1, . . . , p} with at least one strict inequality. This is often
referred to as Pareto dominance and is denoted by u ≺ v.

Definition 2. u strictly dominates v if uk < vk, ∀k ∈ {1, . . . , p}. This relation-
ship is denoted by u < v.

Definition 3. u weakly dominates v if uk ≤ vk, ∀k ∈ {1, . . . , p}. This relation-
ship is denoted by u ≤ v.

Definition 4. A solution x̂ ∈ X is said to be efficient if there is no x ∈ X such
that x ≺ x̂. The set of all the efficient solutions is denoted by XE .

Definition 5. The image z(x̂) of an efficient solution x̂ is said to be a non-

dominated point. The set of all non-dominated points is denoted by ZN and is
called the Pareto front.

Efficient solutions can be divided into two categories: supported efficient
solutions and non-supported efficient solutions. Let conv Z be the convex hull
of Z and R

p
≧

the non-negative orthant of R
p.

– A supported efficient solution is the optimal solution of a weighted sum
single-objective problem with weight vector λ > 0 or, equivalently, a solution
found on conv Z+R

p
≧

. It is said to be extreme if it is a vertex of conv Z+R
p
≧

and non-extreme if it is found in its relative interior.

The sets of supported efficient solutions and supported non-dominated points
are denoted by XSE and ZSN respectively. The sets of extreme supported
efficient solutions and extreme supported non-dominated solutions are de-
noted by XSE1

and ZSN1
respectively.

– A non-supported efficient solution is an efficient solution for which there does
not exist an optimal solution to a weighted sum single-objective problem for
any weight vector λ > 0. Non-supported efficient solutions are found in the
interior of conv Z + R

p

≧
.

Definition 6. The lexicographic order ≦lex between two vectors u and v is
defined by uk∗ < vk∗ or u = v where k∗ = min{k|uk 6= vk}.

Definition 7. A vector v̂ ∈ V is lexicographically optimal for some permutation
π if v̂π ≦lex vπ , ∀v ∈ V .

Definition 8. A complete set XEc is defined as follows: ∀z ∈ ZN , ∃x ∈ XEc, z(x) =
z. A minimal complete set XEm is a complete set without equivalent solutions.

In the next section we describe the traveling salesman problem which provides
a basis for the case study in this paper.



2.2 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimiza-
tion problem (Gutin and Punnen 2002). It represents a class of problems which
are equivalent, given a list of cities and the distances between them, to finding
the shortest tour passing exactly once through each city.

Its multi-objective version formalizes many practical situations with conflict-
ing objectives. For instance, in addition to considering distance, one could also
want to minimize traveled time and total cost.

Given a complete graph G = (V, E) with weights cij ∈ N
p for each (vi, vj) ∈

E, vi, vj ∈ V , the multi-objective problem can be formulated as follows:

min zk(x) =
n∑

i=1

n∑

j=1

ck
ijxij , k ∈ {1, . . . , p} (4)

subject to
n∑

i=i

xij = 1, j ∈ {1, . . . , n} (5)

n∑

j=1

xij = 1, i ∈ {1, . . . , n} (6)

∑

i∈S

∑

j /∈S

xij ≥ 1 ∀S ⊂ {1, . . . , n}, S 6= ∅ (7)

xij ∈ {0, 1}, (i, j) ∈ {1, . . . , n} × {1, . . . , n} (8)

where all coefficients ck
ij ≥ 0 are integers and xij = 1 if edge (vi, vj) is selected

(0 otherwise).
Other than a minimization objective, there are several variations of the TSP,

some of which we list below (see Gutin and Punnen [2002] for an in-depth sur-
vey):

– The MAX TSP where the objective is to find a tour of maximum cost.
– The bottleneck TSP where the largest cost in the tour should be the smallest

possible cost.
– The TSP with multiple visits where each node has to be visited at least once.
– The clustered TSP with a additional constraint stating that all the nodes in

a given cluster must be visited consecutively.
– The generalized TSP which also considers clusters but where the constraint

is that the tour must pass through exactly one node in each cluster.

The distances between the different nodes can be based on different norms (for
example Euclidean or max) or they can just be random distances.

If the distance from any given node vi ∈ V to any other given node vj ∈ V
is the same as the distance from vj to vi, then the TSP is said to be symmetric

and can be referred to as STSP. Otherwise it is said to be asymmetric (ATSP).
The traveling salesman problem is itself a sub-problem of the vehicle routing

problem (VRP). In the classic VRP, a number of identical vehicles, having a ca-
pacity constraint and starting from a central depot, are required to be optimally



routed to supply customers with known demands. Variations of this problem
include vehicles with mixed capacities and customers with time windows.

The TSP and other combinatorial problems can be solved exactly or with
heuristic search methods. The following sections gives an overview of such meth-
ods.

2.3 Metaheuristics

Optimization problems can either be solved exactly, for example using techniques
such as branch and bound, or approximately using heuristics. This section briefly
describes metaheuristics.

A metaheuristic is an approximate and often non-deterministic method used
to guide the search process with the aim of efficiently exploring the search space
and avoiding getting stuck in local optima. There exists a wide variety of meta-
heuristics (Blum and Roli 2003, Glover and Kochenberger 2003). We describe
briefly a few metaheuristics which are mentioned later on in this paper.

– Simulated Annealing (SA) – The basic idea behind this approach is to allow
moves which produce solutions which are worse than the current one in an
attempt to escape local optima. The probability of accepting such “worsen-
ing” moves decreases as the search progresses.

– Tabu Search (TS) – This is based on a memory (which can be short-term or
long-term) called the tabu list which keeps track of visited solutions. While
exploring the neighborhood of a solution, the search is prohibited from using
the neighbors found in the tabu list. This prevents endless loops and allows
for the acceptance of potentially worse moves.

– Variable Neighborhood Search (VNS) – VNS uses a number of different
neighborhoods which are explored consecutively. If there is no solution in the
current neighborhood which improves the current solution, the next neigh-
borhood is explored.

– Genetic Algorithm (GA) – Based on the concept of genes and evolution, GAs
are population based. Offspring solutions are created by combining parents
(often two of them). This behavior can lead to premature convergence but
is countered by mutation (slight perturbations) of solutions.

– Ant Colony Optimization (ACO) – This approach models pheromone trails
which ants deposit on the ground. The path with the higher level of pheromones
is chosen, thus the most used path (the shortest one) gradually emerges.

After this overview of metaheuristics, we now focus on hyperheuristics in the
next section. They provide a higher level of abstraction than metaheuristics.

2.4 Hyperheuristics

Hyperheuristics are a relatively recent development in search methodologies. The
term hyperheuristic was coined by Cowling et al. [2001] to describe approaches



“at a level of abstraction above that of a metaheuristic” and having “no do-
main knowledge, other than that embedded in a range of simple knowledge-poor
heuristics”. This is motivated by the fact that modern metaheuristics tend to
be complex, requiring substantial domain knowledge and a keen insight in the
search method itself (for example to properly set parameters). Although these
approaches have proved to be very effective, their complexity makes them ex-
pensive to implement and often domain-specific. Burke et al. [2003] argue that
real-world users “are more often interested in good enough – soon enough – cheap

enough solutions to their problems”.
Hyperheuristics can be defined as heuristics which select heuristics from a

population of heuristics. As such, a hyperheuristic does not operate in the so-

lution space (this is done by the selected heuristics) but in the heuristic space.
It is important to note that the heuristics can range from simple moves to more
complex metaheuristics. At each step, the selection process chooses the most
promising heuristic (or a combination of heuristics). Ideally, this decision should
require no or minimal knowledge of how the heuristics work but rely instead
on the analysis of one or more objective functions (knowing whether maximiza-
tion or minimization are required) and heuristic performance indicators such as
running time.

There exists a number of various hyperheuristic approaches (Chakhlevitch
and Cowling 2008):

– Random selection based – this is the simplest approach whereby a ran-
domly selected heuristic is applied at each decision point whether there is
an improvement or not. They are usually only used in comparison to single
heuristics or with more complex hyperheuristics. Variants include accepting
only improving solutions, proceeding by descent or hill climbing (applying
the same heuristic as long as it is producing an improvement), or accepting
non-improving solution within a certain margin to avoid getting stuck in a
local optimum (especially if the number of heuristics is small).

– Greedy and peckish – a greedy approach compares the performance of
each heuristic at each decision point and selects the one producing the largest
improvement (and potentially accepting a slight decrease in the objective
value if no improving move is found). This behavior makes them slower than
other hyperheuristics with the added disadvantage that the search space is
not effectively explored. To counter the latter point, the peckish approach
randomly chooses a heuristic among a candidate list of the best heuristics.

– Metaheuristic based – these involve using metaheuristics to select heuris-
tics instead of solutions for which they are traditionally used for.

The first metaheuristic-like approaches were based on genetic algorithms, for
example Fang et al. [1994] who called the process “evolving choice heuristics” and
applied it to open shop scheduling. GA-based hyperheuristics employ indirect
encoding which means that a chromosome does not contain the solution but
rather the way the solution is constructed. This describes either the sequence of
heuristics to be used or which heuristic to use to perform a particular move or
which heuristic is associated with a particular configuration of the problem.



Simulated annealing, ant colony algorithms and variable neighborhood search
have also been used to direct the exploration of heuristic space.

Tabu search has been successfully used as a heuristic selector. Kendall and
Mohd Hussin [2005] proposed two versions for timetabling using 13 low-level
heuristics. In the first, tabu search with hill climbing, all non-tabu heuristics are
considered and the one with best improvement is applied repeatedly until no
more improvement is possible, it then becomes tabu. In the second, tabu search
with great deluge, a solution can be updated within a certain margin. Cowling
and Chakhlevitch [2003] use a population of 95 low-level heuristics to solve a
personnel scheduling problem. They use a tabu list of recently called heuristics
which have not improved the solution and greedily select the best heuristic. If
the latter improves the solution, it is accepted even if it is tabu (it then leaves
the tabu list) otherwise the best non-improving non-tabu heuristic is applied
and then becomes tabu.

Instead of comparing the heuristics in order to find the best one to apply at
a given point, another technique is to learn from their past performance. One
such mechanism is based on reinforcement learning (Kaelbling et al. 1996). This
involves rewarding improving heuristics and punishing less successful ones at
each iteration. Each heuristic is thus associated with a score which can evolve
during the search process and which is used to select the most effective heuristics.
The choice can be made using a roulette wheel (or fair random) mechanism or
by simply selecting the heuristic with the best score (Nareyek 2003).

Another approach is the use of a choice function. Soubeiga [2003] uses a
weighted sum of three functions. Two of them describe the intensification po-
tential of the heuristic taking into consideration the change in the objective
function and the amount of CPU time. The first function scores this behavior
when the heuristic is applied alone and the second when it is applied in sequence
with another heuristic. The third describes the diversification potential (in this
case, the number of seconds since the heuristic was last called).

Hyperheuristics have also been applied to multi-objective problems. Burke
et al. [2005] have applied a tabu search hyperheuristic to space allocation and
timetabling (using two and three objectives respectively). They use reinforce-
ment learning and roulette wheel selection of the objective to improve and select
the best ranked heuristic. Their aim is for the non-dominated set to cover the
Pareto front as widely as possible. They start with a number of random solu-
tions. The score of each heuristic with respect to each objective is used. The
results show that a single tabu list performs better than one for each objective
and that their approach is competitive compared to simulated annealing.

As has been stated, hyperheuristics manipulate low-level heuristics. Next, we
present some simple low-level heuristics (moves) for the TSP.

2.5 Low-level TSP heuristics

The simplest moves for the TSP are exchanges and insertions of nodes, edges
or subpaths (Stattenberger et al. 2007). When discussing the way the moves are
performed we consider the symmetric TSP.



– A node insertion involves selecting a node vi and placing it between two
consecutive nodes vj and vj+1. This is done by deleting edges (vi−1, vi),
(vi, vi+1) and (vj , vj+1) and adding edges (vi−1, vi+1), (vj , vi) and (vi, vj+1).

– A subpath insertion or k-insertion involves selecting a subpath rooted in
a node vi consisting of k consecutive nodes and inserting it between two
consecutive nodes vj and vj+1. This is done by deleting edges (vi−1, vi),
(vi+k−1, vi+k) and (vj , vj+1) and adding edges (vi−1, vi+1), (vj , vi) and
(vi+k−1, vj+1). A 1-insertion is a node insertion.

– A node exchange or swap involves selecting two nodes vi and vj , i < j, and
exchanging their positions. If j > i + 1, this is done by removing the edges
(vi−1, vi), (vi, vi+1), (vj−1, vj) and (vj , vj+1) and adding edges (vi−1, vj),
(vj , vi+1), (vj−1, vi) and (vi, vj+1). If j = i + 1, the move is equivalent to
inserting vi between vj and vj+1 (or the other way round).

– A subpath swap or k-swap involves selecting two subpaths consisting of k
consecutive nodes, one rooted in node vi and one in vj , and switching them.
If j > i + k, this is done by removing the edges (vi−1, vi), (vi+k−1, vi+k),
(vj−1, vj) and (vj+k−1, vj+k) and adding edges (vi−1, vj), (vj+k−1, vi+k),
(vj−1, vi) and (vi+k−1, vj+k). If j = i + k, the move is equivalent to doing a
k-insertion.

– The k-exchange move (Lin 19651) consists in dropping k non-adjacent edges
and reconnecting the remaining paths using k new edges. For instance a 2-
exchange involves deleting edges (vi, vi+1) and (vj , vj+1) and adding edges
(vi, vj) and (vi+1, vj+1). This entails reversing one of the two subpaths re-
maining after dropping the two edges in order to maintain a consistent ori-
entation.

A local-optimum obtained through an improvement method using the k-
exchange neighborhood is called k-optimal or k-opt for short. This term is
often used inappropriately in the literature. It can be observed that any
k-opt, k > 2, can be generated through a finite sequence of 2-opt moves.

The k-insertion and k-swap neighborhoods have a size of O(N2) whereas the
k-exchange neighborhood has a size of O(Nk).

The most common combination of simple moves, which aim to reduce the
complexity of the 3-opt procedure, are the 2.5-opt, or 2h-opt, (Bentley 19921)
and the Or-opt (Or 19761). The 2.5-opt extends the 2-opt by considering a
1-insertion when the 2-opt fails to improve. The Or-opt proceeds sequentially
by first considering 3-insertions then 2-insertions and finally 1-insertions. This
sequential process is generalized to an arbitrary number of stages and for any
ordering by Babin et al. [2005].

The 3-opt move is more effective (but more costly) than the other moves
(Paquete et al. 2004). 2-opt is better than swaps or insertions. As reported by
Johnson and McGeoch [1997] for single-objective optimization, 2-opt and 3-opt
moves produce worse results when starting with good initial tours than when
starting with tours with more defects.

1 as described in Gutin and Punnen [2002]



The k-hyperopt move (Burke et al. 2001) requires deleting two non-overlapping
sequences of k edges and finding the optimal tour of the small TSP consisting of
the cities previously linked by the deleted edges and the two remaining sequences
of edges (each sequence can be considered as a single edge in the small TSP).

Promising moves can be defined as moves which one expects to perform better
than their original version. This can be done using neighbor lists: a list of the k
closest neighbors (in ascending order) is associated to each node. The promising
version of the 1-insertion would select a node vi and insert it after a node which
is one of its close neighbors. Promising moves perform better, in single-objective
optimization, than their normal counterparts (Stattenberger et al. 2007).

We have already presented the TSP and the low-level heuristics which are
applicable. The next subsection of our paper is devoted to heuristics for the
multi-objective TSP.

2.6 Heuristics for the Multi-objective TSP

The multi-objective traveling salesman problem has been less extensively stud-
ied than its single objective variant. A review of the literature also shows that
the number of objectives considered is low (we have found papers mainly con-
cerning two objectives and some concerning three objectives). The focus on two
objectives is motivated by the fact that the problem are “simpler” because of
the natural ordering of efficient solutions.

Jaszkiewicz [2002] proposed a multi-objective genetic local search (MOGLS)
approach which is applied to two- and three-objective TSP. An initial population
is built using random solutions to each of which is applied a random weight
vector. The main algorithm then creates a random weight vector u. The k best
solutions of the population with respect to this vector u are selected. Two parents
are drawn randomly from those k solutions, they are recombined to form a new
solution which is optimized locally (using the 2-exchange neighborhood). If the
resulting solution is better than the k best ones it is added to the population.
The stopping criterion is a given number of iterations.

In Pareto local search (PLS) all the neighbors of every solution of the popu-
lation are examined (Angel et al. 2004, Paquete et al. 2004). If a neighbor is not
weakly dominated by a solution in the list of potentially efficient solutions, it is
added to this list (which is also updated if the new solution dominates solutions
already in the list). The neighbor is also added to the population. The algorithm
ends when there are no more new solutions to examine in the population.

Pareto double two-phase local search (PD-TPLS) (Paquete and Stützle 2003),
for two objectives, starts with two very good solutions (each one optimized with
respect to one of the objectives and computed during phase 1). The solutions are
then driven by the local search using 2- or 3-exchange neighborhoods. The local
optima are added to the set representing the Pareto front. Pareto local search
(2-exchange neighborhood) is then applied to this set. PD-TPLS is shown to
perform better than MOGLS.

Evolutionary multi-objective simulated annealing (EMOSA) (Li and Landa-
Silva 2008), applied to the biTSP, consists of two phases: the first with fixed



and the second with adaptative search directions. A random initial population
is generated as well as an equal number of weight vectors Λ with uniform spread.
During the first phase, for each solution xi, a neighbor x′ is generated (1-swap
neighborhood). It is added to an external non-dominated population if it does
not dominate xi and replaces it with a probability dependent on temperature
and λi. This is repeated K times for each xi. At the end, each solution xj in
the initial population is replaced by x′ if the weighted sum of the objectives is
better and if λj is within a certain radius of λi (competition between solutions).
The second phase consists in adjusting each λi with respect to xi and its closest
non-dominated neighbor in the population. The process loops back to phase 1 if
the minimum temperature is not reached. Results show that EMOSA performs
better than other MOSAs.

Building upon MOGLS, Jaszkiewicz and Zielniewicz [2009] present a Pareto
memetic algorithm (PMA) with path relinking for the bi-objective TSP. The
k number of solutions from which the parents are drawn is dependent on the
number of solutions and a parameter to balance convergence and diversification.
The parents are the two best among those k solutions. Solutions on the path
linking the both parents are added to potentially Pareto-optimal (PP) solutions.
The parents are recombined like in MOGLS. PLS is performed on PP. PMA
outperforms PD-TPLS.

Paquete and Stützle [2009] investigate stochastic local search (SLS) applied
to the 2- and 3-objective TSP. SLS refers to a broad category of methods and
algorithms which use randomized choices in generating and modifying solutions
(for example evolutionary algorithms or simulated annealing). In this instance,
the previous authors consider a number of “components”: search strategy, num-
ber of scalarizations (weighted sums), search length, component-wise acceptance
(accepting non-dominated neighbors in the neighborhood of the result of each
scalarization). Depending on the nature of instances tested, they use either a pop-
ulation of random initial solutions or a single one. SLS is compared to MOGLS
and is found to be better.

Lust and Teghem [2009] propose a simple (no parameters) two-phase Pareto
local search algorithm for the biobjective TSP (2PPLS). They show that a good
initial population, the set of potentially efficient solutions which is computed in
phase 1, makes PLS a very effective algorithm. The first phase is performed using
Aneja and Nair’s [1979] dichotomic algorithm. The second phase then explores
the 2-exchange neighborhood. In addition, Lust and Teghem present a simple
perturbation technique applied to the cost matrices to further improve the initial
population. This step allows them to produce better results than PMA on all
tests.

Measuring the quality of the solutions produced requires indicators, or met-
rics. We give a brief overview in the following subsection.

2.7 Quality Metrics to Assess Sets of Non-dominated Solutions

It is necessary to compare the strengths and weaknesses of different approaches
to ultimately identify the most promising method. The issue of how to compare



multi-objective results is a difficult one. In single objective optimization com-
paring one objective against another is trivial. In comparison, the concept of
quality is less clear in multi-objective optimization.

There exists a number of metrics (or performance indices) to measure the
quality of a population (Okabe et al. 2003). These assess a number of aspects,
namely cardinality, accuracy (how close the solutions are to the real Pareto front)
and the distribution and spread. They can be based on different criteria:

– Distance – the distance between solutions in the population or between two
populations.
The R measure (ranging from 0 to 1, to be maximized) compares a non-
dominated set A with the expected value of the weighted Tchebycheff utility
function over a set of normalized weight vectors (Jaszkiewicz 2000).

R(A) = 1−

∑
Λ∈Ψs

s∗
∞

(z0, A, Λ)

|Ψs|

with Ψs = {Λ = [λ1, . . . , λJ ]|
∑J

j=1
λj = 1, λj ∈ {0, 1/k, 2/k, . . . , (k −

1)/k, 1}} and s∗
∞

(z0, A, Λ) = minz∈A{maxj{λj(zj−z0
j )}} where k is a sam-

pling parameter, J the number of objectives and z0 the ideal point. The
objective values are normalized.

– Volume – the volume of the area dominated by the solutions is considered,
One such metric is the hypervolume indicator H (Zitzler and Thiele 1999).
It indicates the volume of the objective space dominated by the points in the
solution set A and dominating a reference point y∗ (the higher the better).

H(A, y∗) = Λ(∪u∈A{y|u ≺ y ≺ y∗})

where Λ is the Lebesgue measure of a set.
The hypervolume is strictly Pareto compliant (Zitzler et al. 2003), which is
to say that given two Pareto sets A and B the indicator value of A will be
higher than that of B if A dominates B. Hypervolume favors the convex
parts of the front.

– Niching – this takes into account the number of solutions within a certain
radius of given points. The M∗

2 index (Zitzler et al. 2000) is one example
of a performance index which assesses distribution and takes into account
the number of non-dominated solutions. It reflects the number of niches in
A (the higher the better).

M∗

2 =
1

|A| − 1

∑

a1∈A

|{a2 ∈ A|‖a1 − a2‖ > σ}|

where σ is the niche radius.
– Entropy – this is based on Shannon’s entropy.

Farhang-Mehr and Azarm [2003] have proposed one such metric. Each solu-
tion point provides some information about its neighborhood: the influence
function (it is suggested that this be modeled by a Gaussian function). The



aggregation of the influence functions of all solution points is the density
function. A good distribution of solutions would produce a density function
with a relatively even surface.

The number of quality indicators used to compare results should be at least
the same as the number of objectives to be able to detect whether one objective
vector dominates another (Zitzler et al. 2003).

This concludes the first part of our paper. The next section deals with our
proposed method.

3 The Proposed 2-Phase Approach

Our algorithm consists of two phases. The first one computes a very good ap-
proximation of the set of supported efficient solutions using the same method
employed by Lust and Teghem [2009] for the bi-objective problem. When con-
sidering problems with more objectives, in our case three-objectives, the first
phase uses the algorithm proposed by Przybylski et al. [2009].

The second phase iteratively drives a subset of the population across the
potential Pareto-front with the goal of maximizing the hypervolume. The non-
dominated solutions explored are added to the population.

Gandibleux et al. [2003] use the same idea of paying a certain computational
price for good initial solutions which then help the second phase heuristics in
their search.

3.1 Phase 1

The first phase works by intensively using well-known efficient algorithms for
mono-objective combinatorial optimization. This involves preserving the struc-
ture of the problem at all times with the weighted sum being the only usable
scalarization.

Two objectives Phase 1 is based on the dichotomic algorithm by Aneja and
Nair [1979] which determines a minimal complete set of supported efficient so-
lutions. Using weighted sum scalarization, we solve minx∈X{λ1z1(x) + λ2z2(x)}
where λ1, λ2 > 0.

Given two supported solutions x1 and x2 with y1 = z(x1) and y2 = z(x2)
such that y1

1 < y2
1 and y1

2 > y2
2 , let λ = (λ1, λ2) be the weight defined by

λ1 = y1
2 − y2

2 and λ2 = y2
1 − y1

1 . λ defines the normal to the line connecting y1

and y2, λ1y
1
1 + λ2y

1
2 = λ1y

2
1 + λ2y

2
2 .

Let x̂ be an optimal solution of the weighted sum scalarization, with ŷ = z(x̂).
Suppose λ1ŷ1 + λ2ŷ2 < λ1y

2
1 + λ2y

2
2, then ŷ is located below the line connecting

y1 and y2.
We then recursively check to see if there are any supported solutions between

y1 and ŷ and between ŷ and y2.



Algorithm 1: BiobjectiveDichotomy

Compute x(1,2) and x(2,1) two lexicographically optimal solutions for z(1,2) and
z(2,1) respectively ;
X̃ ← {x(1,2), x(2,1)} ;
X̃ ← SolveRecursion(x(1,2), x(2,1), X̃) ;

Algorithm 2: SolveRecursion

Input: x1 ∈ XSE, x2 ∈ XSE, X̃ ⊆ XSE

Output: X̃ ⊆ XSE

λ1 ← z2(x
1)− z2(x

2) ;
λ2 ← z1(x

2)− z1(x
1) ;

x← SolveWeightedSum(λ) ;
X̃ ← X̃ ∪ {x} ;
if λ1z1(x) + λ2z2(x) < λ1z1(x

1) + λ2z2(x
1) then

X̃ ← SolveRecursion(x1 , x, X̃) ;
X̃ ← SolveRecursion(x, x2, X̃) ;

end

If λ1ŷ1 + λ2ŷ2 = λ1y
2
1 + λ2y

2
2 , we can get a non extreme solution or a point

equivalent to y1 or y2.
The algorithm requires two lexicographically optimal solutions to start (Al-

gorithm 1). Let X̃ be the set of efficient solutions computed by the algorithm.
At the end of this method, X̃ contains a minimal complete set of supported

efficient solutions plus possibly some non-extreme or equivalent supported solu-
tions. A complete set of supported solutions is not necessarily obtained.

Three objectives and more It is not easy to generalize the dichotomic scheme
to problems with more than 2 objectives because it relies on the natural ordering
of non-dominated points in the objective space, that is z1(x) < z1(y)⇒ z2(x) >
z2(y). A straight-forward extension of the method of Aneja and Nair [1979]
cannot determine the set of extreme supported points, examples can be found
in Przybylski et al. [2009].

Przybylski et al. [2009] propose a generalization by defining the adjacency
of points involving weight space decomposition. Let (Pλ) define a weighted sum
problem. Based on the following observations:

– all optimal solutions of (Pλ) with λ ∈ R
p
> are efficient,

– for α ∈ R>, (Pλ) and (Pαλ) have the same set of optimal solutions, and
– the weight set Λ can be interpreted as a set of equivalence classes

the previous authors show that geometric duality can be used to identify faces of
the convex hull in the objective space by using suitable functions on a polytope
included in R

p
>.

The algorithm (Algorithm 3) starts with a suitable subset of non-dominated
extreme points {y1, . . . , yk}. It computes the subsets W0(yi) of W0 = {λ ∈



Algorithm 3: Phase One

Input: A polytope H , the cost functions Z
Output: The set S of local non-dominated extreme points with respect to H
if dim H == 2 then biObjectiveDichotomy(Z, S);
else

if H is the initial polytope then Compute the lexicographically optimal
point for each permutation of objectives and add it to S ;
else Compute one optimal solution for Pλ for each extreme point λ of H
and add it to S;

end

Create empty adjacency lists A(y) for each point y of S;
i← 1;
while i 6= length(S) + 1 do

Compute the polytope Hp(y
i) using S;

while Hp(y
i) 6= H(yi) and dimHp(y

i) == H(yi) do

Choose a facet F of Hp(y
i) defined by 〈λ, yi〉 = 〈λ, y∗〉, y∗ /∈ A(yi);

Compute the set SF of local non-dominated extreme points with respect
to F : phaseOne(Z, F);
Identify the definitive face and add new points to S;

end

i← i + 1;
end

R
p|

∑p
k=1

λk = 1} for which yi attains minimal values of 〈λ, y〉 over Z. This is
done by computing the boundary of each set W0(yi), and allows the discovery
of new non-dominated extreme points y. The procedure stops when W0(y) does
not change for any y, at which stage a complete set ZSN1

is known. The al-
gorithm does not only compute all non-dominated extreme points but also the
corresponding partition of the weight set W0 . This fact is used to determine
appropriate weight vectors to obtain the set ZSN (with the maximal complete
set XSEm) by enumeration as well as the faces of conv Z defined by the non-
dominated extreme points.

Our initial approach involved using an exact solver, Concorde, to solve the
mono-objective problem (solveWeightedSum). Considering the running time
and numerical instability which appears for instances with 100 cities or more
(thus not giving exact results), we use the very effective Lin-Kernighan heuris-
tic (Lin and Kernighan 1973), an implementation of which is also provided by
Concorde.

Now that phase 1 has been described, the following part of this paper deals
with phase 2 which uses the solutions produced in phase 1.

3.2 Phase 2

Using the set obtained during the first phase, the second phase’s aim is to further
explore the Pareto front without needing extensive knowledge of the problem
being tackled. The pseudocode is provided in algorithm 5.



Function update

Input: A set of points X l, a new point p ↓
Output: A boolean telling if p has been inserted in X
forall x ∈ X do

if z(x) ≤ z(p) then return false;
if z(p) ≺ z(x) then X ← X\{x};

end

X ← X ∪ {p};
return true;

The algorithm requires a set H of one or more heuristics whose only re-
quirement is to implement a simple interface so that the search mechanism can
manipulate them. A heuristic needs to be able to generate the neighbors of a
given solution point, move between the neighbors, evaluate the quality a point
and apply the move should the main algorithm require it.

The algorithm needs an initial population Pi, |Pi| ≥ 1, it maintains an archive
A of all non-dominated points found and, at each iteration, only uses a running
population P of maximum size S. The use of the non-dominated archive can
be seen as a cut-down version of Pareto local search. The objective being to
explore the front, we use the hypervolume metric to direct the search (by trying
to maximize it). This allows us to consider the movement of each solution with
respect to the current running population and not as a point on its own.

At each iteration, each solution p ∈ P is considered, a heuristic is selected
and the neighborhood of p is explored to find a new point which increases the
hypervolume. Any non-dominated solution found during this process is added to
the archive. Should an improving solution be found, the same heuristic is applied
to the new point which has just been generated in a descent fashion.

If the maximum size of the running population is not reached, improving
solutions are added to P as is, otherwise they replace the point they were a
neighbor of. If no solutions in P were moved during the last iteration, a new
running population is randomly selected from the archive. This prevents the
algorithm from getting stuck in a local optimum and contributes to the diversity
of the solution set.

Since calculating the hypervolume and non-dominated sorting occur con-
stantly throughout the algorithm, it is better to keep S small. We arbitrarily
choose S = 20. We use the hypervolume code from Fonseca et al. [2006].

Heuristic selection mechanism We wish to evaluate and use the best per-
forming heuristics. At the start of the search, all heuristics have the same score,
r(h).The performance of the heuristics is inferred through a system of reward
and punishment, whereby improving heuristics obtain a higher score (r(h) ←
r(h)+α) and non-performing heuristics a lower one (r(h)← r(h)+γ, γ < 0). This
is inspired by the principles of reinforcement learning (Kaelbling et al. 1996).



Algorithm 5: HHSolver

Input: A population of heuristics H , an initial population of solutions Pi, a
running population size S, the cost matrices of the problem

Output: The final population P
T ← ∅; A← Pi; m← 0;
while stopping condition not reached do

if m == 0 then
if |A| ≤ S then P ← A;
else P ← {S randomly selected solutions from A};

v ← hyperVolume(P);
m← 0;
forall p ∈ P do

descent ← false;
o← chooseObjective(p);
h← chooseHeuristic(H, p, o);
repeat

N ← neighbors of p in h neighborhood;
vn ← 0;
while N 6= ∅ and vn ≤ v and time condition do

Select and remove a neighbor n from N ;
if update(A, n) then

Pt ← P\{p};
update(Pt, n);
vn ← hyperVolume(Pt);

if vn > v then

if descent == false then
r(h)← r(h) + α;
m← m + 1;

else r(h)← r(h) + β;
descent ← true;
v ← vn;
P ← P ∪ {n};
if |P | > S then P ← P\{p};
p← n;
empty T ;

else
r(h)← r(h) + γ;
descent ← false;
if |T |+ 1 = |H | then empty T ;
else T ← T ∪ {h};

until not descent ;

To supplement this strategy, a tabu list is also used to prevent worse heuristics
from being used during a certain amount of time (even if it has been performing
well previously). A heuristic is included in the tabu list if it has not been able to
improve the distribution by moving a solution in the given amount of time it was



allowed to run. However, if an improving solution has been found, the tabu list
is cleared (it is also cleared if all heuristics turn out to be tabu). The tabu list is
thus of variable length. No aspiration criterion is used. Burke et al. [2003] point
out that, given the multiobjective nature of the problem, it may be interesting to
consider one tabu list for each objective. We choose not to since the results of the
previous authors do not show any benefit of proceeding in this way. In addition
we remark that we are in reality using only one objective, hypervolume. Also,
our test problem’s nature is simple with 2 or 3 objectives of the same nature,
namely minimisations of the sum of the edge costs.

However, we also take into consideration the fact that certain heuristics may
need to know in which direction (with regard to which objective) the search
needs to be directed. For instance, the simple 1-insertion for the TSP does not
need this information but the promising version does. This is because the latter
does not use random selection of the insertion position but iterates through the
list of closest neighbors of the city which is to be inserted. Thus we need to
specify with respect to which objective this notion of closeness is defined. This
is done by roulette wheel selection with the probability of an objective being
selected being inversely proportional to its quality (the worst objective has more
chance of being selected).

Two heuristic-selection mechanisms are implemented:

– Best rank – the heuristic with the best rank is selected. Ties are broken by
randomly selecting, with equal probability, a heuristic from the ones with
the same score. The initial score of each heuristic when using this approach
is 1, r(h)← 1. There is no minimal score.

– Roulette wheel – the heuristic is selected randomly with a chance propor-
tional to its score. The initial and minimal score of heuristics in this case is
1, min r(h) = 1.

We choose a simple reward and punishment scheme with α = 1 and γ = −0.5
(the algorithm is often faced with non-improving moves). If descent occurs, that
is the heuristic is applied repetitively to a point and its successive improving
solutions, the reward is decreased, β = 0.2. This is motivated by the fact that
we wish to reward improvement of solutions throughout the population and not
on one solution in particular.

Having described our proposed approach, the next section is devoted to eval-
uating its performance by comparing different variants of the approach and also
includes comparisons with existing methods.

4 Performance Assessment

4.1 Methodology

We test our algorithm on a number of instances to evaluate its performance:



– One biobjective instance with 100 cities with Euclidean distances, kroAB100,
created by combining the single objective (kroA100 and kroB100) instances
of TSPLIB2.

– One 100-city clustered instance from DIMACS Challenge3. The instance is
created such that the location of the cities are in the same range as the kro

100-city instances. The number of clusters is N/25, that is 4.
– One 200-city instance, kroAB200.
– One three-objective instance with 50 cities, kroABC50, based on the leading

50 cities of the respective kro instances.

First we test phase 1 to determine the number of solutions produced and
the time taken to do so and experiment with allowing the process to complete
successfully and also stopping it after a number of recursions. This provides us
with a number of populations to use in phase 2:

– The MIN population consists of k solutions for the k-objective problem. Each
solution is optimized considering one of the objectives.

– The DX population consists of the solutions of the phase 1 when it is re-
stricted to a depth of X recursive calls of biObjectiveDichotomy. Restrict-
ing the number of calls reduces the number of solutions produced but they
are still distributed all along the front, at least on the convex fronts presented
here. We only consider D5 and D7.

– The ALL population consists of all the solutions produced during phase 1.

For the second phase, the following 11 low-level heuristics are employed:

– 1-, 2- and 3-insertion, as well as a promising 1-insertion (1INS, 2INS, 3INS
and P1INS).

– 1-, 2- and 3-swap, as well as a promising 1-swap (1SWP, 2SWP, 3SWP and
P1SWP).

– 2-exchange as well as a promising version (2EXC and P2EXC).
– A dummy heuristic which only inverts the first and second city in the tour

(DUM). The purpose of this move is to see if the heuristic-selection mecha-
nism functions correctly, that is uses it the least.

We first compare different versions of our algorithm to see if one performs bet-
ter than the rest: random heuristic selection (RND), best-ranked heuristic with
tabu list (BRTL), roulette wheel (RW), roulette wheel with tabu list (RWTL).
We also test the algorithm using only one low-level heuristic. This is done twice,
with the 2EXC and P1INS single moves which are the best performing heuristics
in our tests.

We then compare our results to those of EMOSA (Li and Landa-Silva 2008)
and 2PPLS (Lust and Teghem 2009) for the instances they have published results
for. We have also implemented our own version of 2PPLS to be able to do
comparisons with other instances.

2 The data can be obtained at http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/)

3 http://www.research.att.com/∼dsj/chtsp/



The metrics used are selected from the ones already presented based on the
ones for which results are available. We choose the metrics so that they can be
applied to more than two objectives:

– The hypervolume H. With the reference point being (180000, 18000) for the
comparison of the 100-city instances and (370000, 370000) for 200 cities with
the results of Lust and Teghem [2009]. Otherwise it is set as the maximum
value of each objective in the solution population. We record two hypervol-
ume measures: RH which is the average of the hypervolume of the running
population of 20 solutions at the end of each iteration and FH which is the
hypervolume of the final population of potentially efficient solutions.

– The R metric. The normalization is carried out considering the ideal point
and the reference point for the hypervolume. In keeping with the literature,
the sampling parameter k is set to 100 for the bi-objective problems and to
40 for the ones with three objectives.

We also record the number of potentially efficient solutions, |PE|. We recall that
at least as many quality indicators as objectives are needed to really determine
if one result is better than another and we note that we only use two metrics for
the three-objective case.

The average of the results for 10 runs are used.
Experiments are run on a PC 2.26GHz Core 2 Duo with 2GB RAM under

Ubuntu 8.10, Linux kernel 2.6.27, g++ 4.3.2 with -O2 flag, single-threaded.

4.2 Experimental Results

Table 1 shows the average number of solutions produced and the time taken
by the exact resolution (EXA-ALL) and Lin-Kernighan (LK-XX) heuristic for
the four test instances. While this is not reflected by the averages in the table,
there is some numerical instability for the exact resolution method with the
number of solutions produced varying slightly between different runs. It can be
observed that the heuristic method greatly reduces the execution time of phase
1 and makes it acceptable when we consider that phase 2 is allowed to run for
30 seconds.

Tables 2, 3, 4 and 5 show the results comparing the different versions of
the phase 2 algorithm when allowed to run for 30 seconds. All 10 runs of each
algorithm start with the same initial population. The tables present how the
starting solution set was obtained and its size, the algorithm used, the number
of iterations performed within 30 seconds, the results for the quality metrics and
the number of potentially efficient solutions.

It is immediately clear that none of the three selection mechanisms (BRTL,
RW and RWTL) performs very well all round. Indeed, the best performer is
the P1INS move when it is alone. This is easily explained by the fact that it
has the smallest neighborhood (for each city only its 20 closest neighbors are
considered) which is created to be of very good quality. This allows P1INS to
outperform the other methods because it is able to consistently run many more



Table 1. Phase 1 results

Instance Stop criterion Solutions Time(s)

KroAB100

EXA-ALL 110.0 403
LK-ALL 110.7 19
LK-D7 97.0 7
LK-D5 33.0 2
LK-MIN 2.0 ∼ 0

Clustered100

EXA-ALL 109.0 124
LK-ALL 111.0 47
LK-D7 85.8 18
LK-D5 32.4 5
LK-MIN 2.0 ∼ 0

KroAB200

EXA-ALL 222.0 1653
LK-D7 122.8 18
LK-D5 33.0 4
LK-MIN 2.0 ∼ 0

KroABC50

EXA-ALL 286.3 450
LK-ALL 295.3 103
LK-D5 285.2 58
LK-MIN 3.0 ∼ 0

Table 2. Phase 2: KroAB100 results

Start Algorithm Iterations R H(108) F H(108) R |PE|

All (110)

BRTL 62.0 211.13 217.82 0.935156 805.2
RW 46.8 211.00 217.80 0.935188 733.2
RWTL 45.2 211.48 217.80 0.935133 730.3
RND 46.6 211.37 217.78 0.935136 687.6
2EXC 34.5 211.40 217.83 0.935139 817.2

P1INS 218.2 211.15 217.96 0.935177 1593.8

D5 (33)

BRTL 40.2 212.92 217.70 0.935149 847.5
RW 39.3 212.53 217.63 0.935092 769.2
RWTL 39.4 212.90 217.62 0.935132 773.9
RND 39.0 212.02 217.57 0.935146 742.7
2EXC 32.0 212.71 217.69 0.935220 856.2

P1INS 204.2 211.44 217.70 0.934949 1496.9

Min (2)

BRTL 119.8 158.28 209.81 0.929568 382.3
RW 73.0 176.16 211.35 0.931365 520.0
RWTL 65.5 178.30 211.98 0.931074 542.1
RND 44.4 184.09 211.56 0.930923 494.9
2EXC 152.0 168.93 212.26 0.931314 571.9

P1INS 187.9 171.80 205.49 0.922950 971.4



Table 3. Phase 2: Clustered100 results

Start Algorithm Iterations R H(108) F H(108) R |PE|

D5 (31)

BRTL 38.5 210.10 214.44 0.946663 905.2

RW 37.7 210.35 214.46 0.946676 828.1
RWTL 38.2 210.56 214.46 0.946660 827.7
RND 38.4 209.86 214.36 0.946634 809.5
2EXC 31.4 209.96 214.44 0.946611 899.6
P1INS 174.6 208.83 214.56 0.946662 1652.0

D7 (89)

BRTL 40.3 208.06 212.83 0.946658 832.8

RW 39.9 207.97 212.81 0.946630 779.5
RWTL 39.6 207.47 212.79 0.946606 733.1
RND 39.6 207.57 212.77 0.946627 707.9
2EXC 32.1 207.39 212.83 0.946692 831.9
P1INS 197.2 207.12 212.97 0.946730 1650.5

Table 4. Phase 2: KroAB200 results

Start Algorithm Iterations R H(108) F H(108) R |PE|

D5 (33)

BRTL 35.0 833.19 851.65 0.874866 1098.3

RW 35.7 835.98 851.46 0.874853 1032.9
RWTL 34.8 834.36 851.46 0.874881 992.5
RND 33.6 835.21 851.34 0.874764 927.8
2EXC 27.5 835.78 851.61 0.874934 898.0
P1INS 52.9 825.87 851.25 0.874434 1481.3

D7 (124)

BRTL 40.4 828.95 853.42 0.875374 1018.7

RW 40.8 831.03 853.35 0.875403 919.1
RWTL 37.7 831.35 853.43 0.875376 920.3
RND 36.8 831.12 853.39 0.875334 880.0
2EXC 28.9 831.72 853.35 0.875340 749.5
P1INS 74.2 828.62 853.65 0.875460 1616.9

Table 5. Phase 2: KroABC50 results

Start Algorithm Iterations R H(1012) F H(1012) R |PE|

D5 (275)

BRTL 34.3 255.48 308.59 0.982780 2443.4
RW 34.8 254.61 306.92 0.982761 3998.7
RWTL 40.0 252.87 299.22 0.982817 4644.9
RND 36.7 252.66 299.26 0.982751 3821.3
2EXC 33.3 253.70 305.41 0.982773 4283.1

P1INS 48.2 245.35 300.88 0.982734 4714.0

Min (3)

BRTL 75.8 161.69 232.64 0.981292 3225.8
RW 63.3 180.35 237.46 0.981236 3313.2
RWTL 53.5 180.78 234.52 0.981256 3538.5
RND 45.3 196.67 228.92 0.981267 3246.2
2EXC 99.3 164.98 237.07 0.981404 3523.5

P1INS 100.5 161.57 230.36 0.978900 3642.6



iterations within the same time frame. It is therefore able to create a much
larger population which influences very favorably the quality of the metrics such
as the final hypervolume, FH, or the R measure. This behavior can be seen
as a cut-down version of PLS. We note however that it is not very good for
the hypervolume of the running population. In contrast the heuristic-selection
mechanisms perform much better for RH which is to be expected since this is
what is driving the search.

As expected, RND selection is outperformed by other selection mechanisms
in general.

Setting aside P1INS, the selection mechanism which seems to perform the
best is BRTL. It is apparent that the best performance from this algorithm
comes when it starts off with a solution of “moderate” quality. If the starting
population is very small (MIN), the running population quickly locates the good
solutions to maximize hypervolume. It then seems to get stuck in a local optimum
because when the process is restarted the random selection of a new population
can only choose from a limited part of the front. If the starting population is
too good (ALL and sometimes D7), there is a very small margin of improvement
and the gains in hypervolume are mainly due to the addition of non-dominated
solutions to the final non-dominated set. In contrast with an average starting
population, the search is not biased towards the more PLS-like P1INS and the
selection mechanism has a population which is diverse enough that when a new
population is randomly selected, this choice can be performed all along the front.

Visual examination of the solutions sets obtained when starting with MIN
(Figure 1), reveals that the large majority of the points are found at the center
(most curved part) of the front and not many near the extremities. This seems
to be an effect of the bias of the hypervolume metric in favor of convex fronts.

Figures 2 and 3 show the typical behavior of low-level heuristic selection
for BRTL. Good moves get progressively selected more often. Bad moves such
as DUM still get selected because of the tabu list feature. We stress that this
behavior is by design since the heuristic selection mechanism does not know that
DUM will always fail. When other, better, heuristics fail, it still tries the bad
ones in an effort to improve the situation.

Table 6 presents the results of the comparison between BRTL (starting with
the solutions produced without prematurely ending phase 1) and EMOSA for
the instances published by Li and Landa-Silva [2008].

BRTL manages to outperform EMOSA for the hypervolume metric in three
out of four instances.

Table 7 gives the results4 of the comparison between BRTL and 2PPLS.
Both BRTL and 2PPLS are given the same initial population of a full phase 1
execution. It is clear that 2PPLS outperforms BRTL although they are relatively
close on the hypervolume and R metrics for the 100-city instances (but 2PPLS is
much faster and produces more potentially efficient solutions). This is confirmed
visually in Figure 1 when both approaches are compared.

4 Recall that the reference point for the computation of hypervolume here is the same
as in Lust and Teghem [2009] and not the one used in the previous tables.



Min (2)

All (33)

All (110)

2PPLS - All (110)

Fig. 1. Sample Pareto fronts for our approach (BRTL) starting with Min(2), D5(33)
and All(110) solution sets and 2PPLS starting with All(110).

Table 6. Phase 2: Hypervolume (1010) comparison with EMOSA

Instance BRTL EMOSA

kroAB50 0.3544 0.2839

kroBC50 0.4327 0.2809

kroAB100 2.1782 1.9060

kroBC100 1.8630 1.9392
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Fig. 2. Cumulative number of improving moves for each low-level heuristic against the
number of iterations for one run of BRTL using kroAB100. The 2EXC and P1INS are
the two best moves in this case.
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Fig. 3. Total number of trial and improving moves for each low-level heuristic for one
run of BRTL using kroAB100.

We stopped the three-objective instance running on 2PPLS before it was
completed because it was taking more than an hour to run. There is a second set
of results for 2PPLS with three objectives: one which is stopped after 30 seconds
(the same time given to BRTL). For the same running time of 30 seconds, BRTL
performs better than 2PPLS.

5 Conclusion

In this paper we have presented a new heuristic-selection mechanism. We have
shown through a number of experiments that it performs moderately well for av-
erage starting populations but is clearly outperformed for very small or already
very well distributed sets. Although it is able to perform better than some pre-
vious approaches, it lags being 2PPLS. 2PPLS is an extreme efficient algorithm
both in terms of its simplicity and the quality of its results.

There are a number of potential paths for further investigation:

– Our algorithm is coded such that it can be relatively easily modified to tackle
another problem. It would therefore be interesting to check if it performs any
better on other, more complicated, problems.

– The use of Concorde as our single-objective solver precludes the use of ob-
jectives other than a minimization of the sum of the edge costs. It would



Table 7. Phase 2: Comparison with second phase of 2PPLS

Instance Algorithm H(108) R |PE| Time(s)

kroAB100
BRTL 225.84 0.935156 805.2 30
2PPLS 226.11 0.935259 2541.7 13

Clustered100
BRTL 233.12 0.946717 880.3 30
2PPLS 233.35 0.946786 2473.0 13

kroAB200
BRTL 835.37 0.8753578 1084.9 30
2PPLS 1076.08 0.945067 6736.5 20

kroABC50
BRTL 4092608 0.982856 4888.2 30

2PPLS(30) 3454695 0.97029 10131.0 30

2PPLS – – 40790+ 3600+

be interesting to observe the behavior of the algorithm on instances with
other objectives, for instance ones which produce non-convex Pareto fronts
(Li and Landa-Silva 2008).

– We use a fixed population size of 20 (unless the initial population is smaller,
in which case it grows up to 20). Varying the size of the population through
out the search might prove beneficial since this will prevent the algorithm
from always converging to the same points which optimize hypervolume.

– The running population is randomly selected from the set of non-dominated
solutions already found. This selection could be performed more intelligently
by selecting solutions which are more likely to give better improvements
(solutions with few neighbors for example).

– The punishment and reward mechanism is very simple and could be improved
to take into account factors such as running time and percentage change in
the quality of solutions. This “tuning” of the algorithm, which may need to
be changed depending on the problem to solve, detracts from the relatively
simple easy-to-use approach which hyperheuristics are supposed to be.

– The hypervolume metric, which drives the search, could be replaced or used
in conjunction with other metrics.

– Our results show that BRTL performs comparatively better using an average
starting population. We do not use the full potential of phase 1. The latter
could be replaced by a simpler method which creates a number of solutions
on the Pareto front using uniformly distributed weight vectors.

– Obviously, further investigations should try to include other low-level heuris-
tics and find out how the size of the heuristic population can affect the
resolution.

Hyperheuristics and assimilated heuristic-selection mechanisms have up to
now been used for problems, such as timetabling, which are much more compli-
cated than the TSP. Following the relatively poor performance of our approach
for the TSP, and while we acknowledge that our method may not be better in
another case study, it is our view that hyperheuristics are better suited to more
difficult problems:



– Highly constrained problems are more likely to have low-level moves which
will affect positively one constraint and others negatively. This bars the pos-
sibility of one heuristic performing very well on its own and thus a heuristic-
selection mechanism is useful to choose the good move at the good moment.

– Problems such as timetabling cannot be readily be tackled with algorithms
similar to Pareto local search (and in particular 2PPLS) which already offer
very good results for simpler problems.

Despite what we have already stated, we believe that further investigation
of hyperheuristics applied to the TSP needs to be done. One potential avenue
would be using a GA-based hyperheuristic to evolve combinations of moves (as
has been done “manually” by Babin et al. [2005]) to solve the single-objective
TSP.
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Paquete, L., Stützle, Th.: A Two-Phase Local Search for the Biobjective Traveling
Salesman Problem. (2003)
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