
Multi-objective Branch and Bound for Mixed 0-1

Linear Programming : Corrections and

Improvements for the Biobjective Case

Thomas Vincent

AG OPTIMIERUNG
Universität Kaiserslautern

Postfach 3049
67653 Kaiserslautern – Germany

thomas.vincent@etu.univ-nantes.fr

Abstract. This work addresses the correction and improvement of Mavro-
tas and Diakoulaki’s branch and bound algorithm for mixed 0-1 MOLP.
We first develop about the issues encountered by the original algorithm
and propose and corrected version for the biobjective case. We then in-
troduce several improvements about the bounds and end with the propo-
sition of a new algorithm based on the two phase method and the Branch
and Bound.

1 Introduction

We introduce the main definitions, properties and notations of multi-objective
linear programming and multi-objective integer linear programming. The inter-
ested reader can find a more thorough introduction in [7] and [16].

A multiple objective linear program (MOLP) can be formulated as follows:

min Cx

s.t. x ∈ X

Here, C = (c1, ..., cp)T with rows c1, ..., cp denotes a p×n linear objective matrix,
x ∈ Rn the vector of variables, and

X := {x ∈ Rn : Ax ≦ b, x ≧ 0}

is the feasible set in decision space Rn. A is a m × n matrix of constraints and
b ∈ Rm the right hand side vector. We refer to

Y := CX := {y := Cx ∈ Rp : x ∈ X}

as the outcome set in objective space Rp.

By adding integrality requirements to the variables in X we obtain a mul-

tiple objective integer linear program (MOILP). MOLP and MOILP are special
cases of Multiple Objective Mixed Integer Linear Program (MOMILP) where the



integrality requirements are only added to a subset of the variables in X. For
all these problems we assume that the objective functions are conflicting. This
assumption guarantees that there does not exist an ideal solution x ∈ X which
minimizes simultaneously all p objectives.

As there is no canonical ordering defined in Rp for p ≥ 2, minimizing a vector-
valued objective function needs to be explained. We use the Pareto concept
of optimality which is based on the three binary relations ≦, ≤ and <. Let
y1, y2 ∈ Rp. Then

y1 ≦ y2 ⇔ y1

k ≤ y2

k ∀k = 1, ..., p
y1 < y2 ⇔ y1

k < y2

k ∀k = 1, ..., p
y1 ≤ y2 ⇔ y1 ≦ y2 and y1 6= y2

A point y1 ∈ Rp dominates (resp. strictly dominates, weakly dominates)
y2 ∈ Rp if y1 ≤ y2 (resp. y1 < y2, y1 ≦ y2). The Pareto cone is defined as
Rp

≧
:= {y ∈ Rp : y ≧ 0}.

A feasible solution x̂ ∈ X is called efficient (or Pareto optimal) if there does
not exist x ∈ X such that Cx ≤ Cx̂. In other word, no solution is at least as
good as x̂ for all objective functions and strictly better for at least one. When x̂

is efficient, Cx̂ is called non-dominated. The efficient set XE ⊆ X is defined as

XE := {x ∈ X : ∄x̄ ∈ X : Cx̄ ≤ Cx}

and its image under the vector-valued linear mapping C is the non-dominated

set YN := CXE . The goal in an exact solution of a MOLP, MOILP or MOMILP
is to determine a complete set, i.e. a set containing at least one efficient solution
for each non-dominated point in YN .

The efficient frontier (or Pareto frontier) is defined as the set {y ∈ conv(YN ) :
conv(YN )∩(y+(−Rp

≧
)) = y} where conv is the convex hull operator. For MOLP

the efficient frontier is identical with YN and in the case of p = 2 objectives, the
efficient frontier is known to be piecewise linear and convex. Its breakpoints
are the extreme non-dominated points which are images of some of the extreme

efficient solutions of decision space. If a non-dominated objective vector is on the
efficient frontier it is called a supported non-dominated vector. Otherwise it is
an unsupported non-dominated objective vector. The corresponding solutions in
decision space are called supported efficient solutions and unsupported efficient

solutions. It is important to notice that for MOLP every efficient solutions are
supported, whereas for MOILP unsupported efficient solutions may exist.

Each supported efficient solution can be found as an optimal solution to the
weighted sum problem, min{λCx, x ∈ X}, for a certain λ ∈]0, 1[p [9,10].

Two different notions of connectivity respectively based on topology and
graph theory are used in the context of multiple objective programming.

We call a set S topologically connected if there does not exist non-empty open
sets S1 and S2 such that S ⊆ S1∪s2 and S1∩S2 = ∅. For MOLP the efficient set
XE and the efficient frontier YN are topologically connected and YN is composed



of faces of dimension 0 to p−1. In contrast, neither XE nor YN are topologically
connected for MOILP.

Let G = (N,A) denote the adjacency graph of MOLP where N is the set of
efficient basic feasible solutions and A is the set of edges between nodes which
can be obtained from each other by a single pivot operation. Isermann showed
that this adjacency graph is connected (see [11]). It is therefore possible to find
XE and YN by simple pivot exchange arguments for MOLPs. Multiple objective
simplex algorithm are based on this graph connectivity property and allow to
find all the extreme efficient solutions and in an implicit manner all the efficient
faces in the decision space and all the non-dominated faces in the objective space.
However, many authors consider extreme non-dominated points in the outcome
set as sufficient information on the solution of the problem, and efficient methods
have been designed for this purpose. See [1,2] for discussions on this topic.

Literature about MOIP problems can be found in [5,18]. See [3,4,6,14] for
literature about MOIP problems with binary variables only.

The important differences between MOLP and MOILP problems beg the
question of the properties of efficient and non-dominated sets for MOMILPs.
Are they topologically like in MOLP problems or not, like in MOILP problems
? Are these sets graph connected ? As MOMILP shares properties with both
MOLP and MOILP, everything is likely to happen, especially efficient and non-
dominated sets partially connected.

The rest of the paper is organized as follows. In Section 2 we describe the
original multiple objective branch and bound algorithm and discuss about some
issues and how to fix them. Then we present several improvements for the branch
and bound in Section 3 and computational results in Section 4.

2 Mavrotas and Diakoulaki’s multiple objective branch

and bound

The branch and bound algorithm for mixed binary multiple objective linear pro-
gramming presented by Mavrotas and Diakoulaki in [12,13] is a modified version
of the conventional single objective branch and bound. The conventional algo-
rithm systematically examines all the possible combinations of discrete variables
in order to find the optimum solution of the single objective problem but is not
designed for multiple objective problems where more than one solution can be
efficient.

2.1 Definitions

Here we define the terms used to describe the procedure. They are mainly reused
from [12].

The combinatorial tree is the structure built to examine all possible solutions
to the problem. During its construction the binary variables are sequentially
assigned to 0 and 1. Until a binary variable is assigned to a value, it is called



a free variable and considered as a linear variable varying in the interval [0,1].
Like in a single-objective Branch and Bound, the linear relaxation of the problem
with fixed variables will be considered at each node, i.e. a MOLP. Since each
intermediate node of the tree will have exactly two successors (or children), we
can call it binary tree.

A node of the combinatorial tree is a partial solution of the problem. A subset
of the binary variables are already assigned to 0 or 1. The root node is the first
node of the tree and corresponds to the linear relaxation of the problem without
fixed variable of the problem where every binary variables are free. A final node

is a leaf node, meaning that all the binary variables are assigned to a value.

A branch of the tree is a sequence of linked nodes.

Fathoming a node means to stop the exploration of the branch correspond-
ing to the node because it is established that none of its children will lead to
interesting solutions. This occurs when the current node is already infeasible or
is dominated by one or more final nodes.

Partially non-dominated points are the non-dominated points generated from
each final node. It is important to declare a solution "partially" efficient until all
the final nodes are explored. Such a solution indeed corresponds to an efficient
solution of a sub problem and we have no guarantee about its efficiency for the
general problem. The partially efficient solutions are only candidates for being
efficient for the general MOMILP problem. They are stored in a database Dex

during the exploration of the binary tree.

Pseudo non-dominated points are the extreme points only dominated by a
convex combinations of two other extreme partially non-dominated points.

Non-dominated points are points that are proved to be non-dominated for
the general problem. They are the former partially efficient points which are still
in Dex at the end of the procedure.

Efficient combinations are the combinations of values of the 0-1 variables
which lead to efficient solutions. They point out the branches which end to final
nodes where efficient points are generated.

2.2 Description of the algorithm

The branch and bound algorithm is a depth first search in the combinatorial
tree. It starts from the root node and moves downward to the final nodes. When
one of them is reached, the corresponding MOLP problem is solved and its non-
dominated points are computed. When a node is found to be fathomed, the
algorithm backtracks to evaluate the remaining branches. When every possible
combination of the binary variables has been examined, the process stops and
Dex contains the efficient points.

When a node is explored, the corresponding MOLP model is created from
the original problem and the current partition of binary variables given by the
branch. The assigned variables are implicitly evaluated, i.e. they are replaced by
their value (0 or 1) in the constraints and the objective functions. For each free



variable an inequality constraint is added to the model to bound the variable in
the interval [0, 1]. The ideal vector of the local problem is calculated by individual
optimization of each objective function and is then compared to the points stored
in Dex. If there exists a point dominating the ideal vector, then every feasible
solution of the local problem is dominated by the same point. In this case or if
the problem is infeasible, the node is fathomed.

Each time a leaf node is considered, the partially non-dominated points are
generated and Dex is possibly updated. It is important to notice that here the
partially non-dominated points are only the extreme non-dominated points of
the MOLP. Consequently, the update of Dex is done by the classical pairwise
comparison merging two sets of points inside of which no point dominates an-
other one.
Mavrotas and Diakoulaki (2005) have proposed an improved version of their al-
gorithm. In particular, they have noticed that non-dominated points of MOLP
are not reduced to extreme non-dominated points, and that consequently their
first algorithm may generated dominated points. Thus, they have added a final
filtering test in their improved algorithm.
On Figure 1 two extreme efficient points oD1 and D2 generated from the same
final node belong to Dex. D′ is a convex combination of them and dominates
the partially-efficient point of D3 without B1 nor B2 dominating it so D3 has
to be removed from Dex. In order to handle this case, Mavrotas and Diakoulaki
proposed a test consisting, for each point of Dex, in checking dominance with
each feasible combination of two partially efficient points.

z1

z2

D

D

D

D’

3

1

2

Fig. 1. Dominated point of Dex now detected.



3 Corrections and improvements

3.1 Missed dominated and non-dominated solutions

As it is done very often for MOLP, Mavrotas and Diakoulaki’s method stores only
extreme non-dominated points, but every pseudo-efficient solutions may be not
filtered. The process for the filtering of pseudo-efficient solutions is disconnected
of the main test and nothing is said about when it is applied. We can consider
three possible cases :

– The efficient extreme points of each efficient combination and their efficient
edges are deduced from Dex after the termination of the branch and bound
algorithm. However, some extreme points of these efficient combinations may
have been filtered and consequently some efficient edges loosed.

– The efficient extreme points of each efficient combination have been stored
during the solution, therefore every efficient solutions should be stored. Un-
fortunately, even in non-efficient combinations (i.e. combinations of extreme
points that have been all filtered), some part of edges may be efficient and
therefore useful to filter pseudo-efficient points in Dex.

– The efficient extreme points of each combination (efficient or not) are stored
for the final filtering. Indeed, we do not know immediately if a combination is
efficient so it may be natural to store it, as partially efficient extreme points
are stored. In this case, no efficient points are lost but this solution is heavy
in memory and requires so many dominance test (considering efficient and
non-efficient combinations) that it is not realistic to apply it.

z1

z2

A

B

D

D

1

2

A’

B’

Fig. 2. Pseudo-efficient points of Dex still not detected.

The second case is shown in Figure 2. In this example, D1 and D2 will be
kept in Dex although there are dominated by convex combinations of points A



and B. The dominance test fails because A and B are dominated so they are
not stored in Dex and the information about the efficient edge [A′, B′] is lost.
Extreme efficient points are consequently not enough to keep all the information
needed to describe the non-dominated set of the main problem and we cannot
afford to store every pseudo-efficient points in order to perform a very large
number of dominance tests. It is therefore necessary to also store points like A′

and B′ on Figure 2 that are actually non-extreme points but keep track of the
non-dominated faces and allow to not keep track of pseudo-efficient points like A

and B that are not relevant anymore. The example used represents a biobjective
problem but the issues are obviously the same for p ≥ 2. In the rest of this
paper, we will consider the biobjective case only due to the greater easiness to
represent faces (points and edges).

We propose to store pseudo-efficient points and guide points in an ordered set
called SN instead of Dex since we no longer consider only extreme non-dominated
points. In addition to this, each point of SN is associated with three flags. The
two first flags respectively indicate whether or not the point is connected with
its predecessor and successor in the list. From now "connected" will refer to the
notion of "graph connection" presented in the first section, that is two points
connected necessarily come from the same MOLP. The third flag is set on true

when the corresponding point is an extreme efficient point.

Thanks to this representation, we can build YN from the points of SN . When
two consecutive points are connected according to their flags, the face connecting
them is implicitly declared feasible and efficient.

3.2 Better representation of the non-dominated set

As we have seen, Dex stores efficient points that have been proved to be non-
dominated. Assume that the branch and bound procedure is correct, that is
Dex contains exactly the extreme efficient points after the termination of the
algorithm. We therefore obtain a set of points which may be non-connected as
showed on Figure 3. In this case, although they are non-dominated, the points
of Dex are not sufficient to describe YN as for MOLP problems because no face
of YN link two of these points so if a decision maker is not satisfied by any of the
four solutions proposed, there is no way to choose an other efficient solution.

In SN , some intermediate points are stored in addition to the extreme ones
as shown in Figure 4. Compared to Dex, SN does not contain three but five more
points because I1 and I2 are double points. In fact for I1 we need one point to
end the face starting in A and another one to start the face ending in B and
it is the same for I2 connecting B and C. Now, if the decision maker is not
satisfied by any of the four extreme solutions, it is possible to compute quickly
and propose him other efficient solutions more likely to be suitable for him.

3.3 Non extreme efficient points

When a new set of partially efficient points E is generated from a final node,
we have seen that merging E and SN is not sufficient. The update of SN must



z1

z2

Fig. 3. Representation of Dex with ex-
treme points.

z1

z2

Fig. 4. Representation of SN with ex-
treme and guide points.

indeed be subtle enough to also add the intermediate points that will described
exactly the current set of partially efficient points.

Because many situations can happen during the update of SN , we will here
focus on the description of the cases that are the most likely to appear. The
update procedure considers one point at a time and is basically divided in two
parts. The first one only checks if the current point dominates or is dominated
by any point represented by SN . The second part deals with the edge that may
start at the current point. At each step, we assume that everything has been
done correctly before so we only have to consider the current point and what is
on its "right".
During all the solution, a special flag nondom is set on true or false depending
on how were SN and E just before the current point. nondom is set on true

when E dominates SN , otherwise its value is false. This flag is for example used
to know when it is appropriate to add a intermediate points to shorten an edge
of SN .

Let x be the point of E currently tested for dominance. First the position of
x compared with SN has to be checked. If c1x < c1sfirst where sfirst is the first
point of SN (i.e. x is on the left of SN ) then x is obviously added to SN .

If x is not on the left of SN , let s1 be the last point such that c1s1 < c1x. x

will not be added if it is dominated by s1.
As intermediate points matter, when s1 has as successor s2 and is connected to
it, we need to check if a convex combination of them dominates x. To do so, we
compute the projection xproj of x onto the edge [s1, s2] along the second objec-
tive’s axis. If x is dominated by xproj (Figure 5) then it is discarded, otherwise
(Figure 6) it will be added to SN . If the flag nondom is equal to false, xproj is
added to end the non-dominated edge starting in s1 and nondom is set on true.



z1

z2

s

s

x

x

1

2

proj

Fig. 5. Candidate point dominated by
its projection onto an efficient edge.

z1

z2

s

s

x

x

1

2

proj

Fig. 6. Candidate point non-
dominated by its projection onto
an efficient edge.

In the case where x has been found to be non-dominated, it is possible that
one or more points of SN are dominated by it. All extreme points dominated
by x are consequently removed. How intermediate points are treated will be
explained later.
These first steps are summarized in Algorithm 1.

Now we know whether x has been added or not we have to consider the
case where it has a successor x2 in E. Since E is the non-dominated set of
a MOLP problem, x and x2 are connected if x2 exists. We have to compare
combinations of x and x2 with each couple of consecutive points s1 and s2 such
that c1x <= c1s2 and c1s1 <= c1x2, that is we exclude couples of points ending
before x or starting after x2. For a given couple s1 and s2, we have two main
possibilities.
First, assume that s1 and s2 are not connected. We can then focus only on s1

because s2 will be considered when we will shift to the next couple of point (s2

will become s1). If s1 is dominated by a convex combination of x and x2 then
we simply remove it. Otherwise we have to remove the convex combinations
dominated by s1 to the edge that will be added to SN , that is new intermediate
points will be added if necessary.
Suppose now that s1 is connected to s2. Edges [s1, s2] and [x, x2] can intersect
in p. If p is found to be at the same time a convex combination of x and x2 and
of s1 and s2, the edges actually intersect in p. In this case (see Figure 7), p is
added twice as the end of a face and the beginning of the other, depending on
the value of the flag nondom. In Figure 7, p is added as the end of [x, p] and then
as the beginning of [p, s2] and also contains the corresponding variables values.
An other possibility is that [s1, s2] may overlap a part of [x, x2] like in Figure 8.



Algorithm 1 Update1 procedure

Require: SN and x, a partially non-dominated point of the current node
determine s1 and s2 the two consecutive points of SN such that c1s1 < c1e ≤ c1s2

if s1 does not exist then

Add x to SN

else

if e is not dominated by d1 then

if s1 and s2 are connected then

Compute the projection xproj of x onto [s1, s2] along the axis of the second
objective
if x is not dominated by xproj then

if nondom is false then

Add xproj as the end of the edge starting in s1

non− dom← true

end if

Add x

end if

else

if x is non-dominated by s2 then

Add x do SN

non− dom← true

end if

end if

Remove all the points explicitly belonging to SN dominated by x

end if

end if



This case happens when nomdom is set on true (i.e. just before x, SN was not
dominating E) and s1 dominates its projection onto [x, x2].

z1

z2

s

s

x

1

2

x2

p

Fig. 7. Edges [s1, s2] and [x, x2] inter-
sect in p.

z1

z2

s

s

x

1

2

x2

Fig. 8. [s1, s2] overlap the end of
[x, x2].

If x has no successor (i.e. it is the last point found in the current final node)
and if an edge [s1, s2] as previously defined exists, we just need to check if the end
of the edge is dominated by x. The test is based on the same idea of projection but
along the axis of the first objective function. In the example shown in Figure 9,
xproj will be added to start the remaining edge [xproj , s2].

3.4 Finding a better lower bound set

In the original algorithm the fathoming test consists in comparing the ideal
vector of the current node with Dex. If the vector is dominated, then the node
can obviously be fathomed and its successors will not be explored. The old
definition of Dex was inexact so nodes that had to be fathomed could be missed
if the ideal vector was not dominated an extreme point but by and intermediate
one. The updated version SN is consequently a better lower bound set since it
will allow to fathom more nodes.

Using the ideal vector in the fathoming test has the advantage to be very
cheap. Computing it consists in fact in solving two single objective linear pro-
graming problems and then the test procedure only has to compare this single
point with SN . However inefficient nodes could be kept due to the distance
between the ideal vector and the non-dominated points. The ideal vector is
indeed "far away" from the non-dominated set due to the large number of non-
dominated points and the conflicting nature of the objective functions. As a
result, a large part of the combinatorial tree may be explored in vain because



Algorithm 2 Update2 procedure

Require: SN and x, a partially non-dominated point of the current node
if x has a successor in E then

let x2 be the successor of x {x and x2 are connected}
determine s1 and s2 the two consecutive points of SN such that c1s1 < c1e ≤ c1s2

while c1s1 ≤ c1x2 and s2 exists do

if s1 and s2 are connected then

if [s1, s2] and [x, x2] intersect in point p then

if nondom is false (i.e. [s1, s2] dominates [x, x2] before c) then

Add c as the end of [s1, c] and as the beginning of [c, x2]
else

Add c as the end of [x, c] and as the beginning of [c, s2]
end if

nondom← ¬nondom

else

if a point xdom of [x, x2] is dominated by [s1, s2] and nondom is true then

Add the intermediate point xdom to SN to end the segment [x, xdom]
nondom← false

end if

end if

else

if s1 is dominated by a point of the edge [x, x2] then

remove s1

nondom← true

else

if nondom is true then

Add the projection sproj of s1 along c2 onto [x, x2] to end the segment
[x, sproj ]

end if

nondom← false

if c2s1 > c2x2 then

Add the projection s′proj of s1 along c1 onto [x, x2] to start the segment
[s′proj , x2]

end if

end if

end if

if s2 is dominated by a convex combination of x and x2 then

Remove s2 from SN

end if

s1 ← s2

s2 ← the next point in SN

end while

else

if x dominates a part of [s1, s2] and c2x > c2s2 then

Add the projection xproj of x along c1 onto [s1, s2] to start the segment [xproj , s2]
end if

end if



z1

z2

s

s

x
x

1

2

proj

Fig. 9. Candidate point non-dominated by its projection onto an efficient edge.

Algorithm 3 Main update procedure

Require: SN and E

nondom← false

for all x ∈ E do

Update1(x, SN )
Update2(x, SN )

end for

the partially efficient points obtained are always dominated by SN but their
ideal vector is good enough to the nodes be considered as promising. Since the
quality of a branch and bound relies strongly on the quality of its bounds, it
could be preferable to use a more expensive but more accurate test.

The way to perform an exact fathoming test could be to compute for each
node the corresponding efficient set E and compare it to SN . If every points of
E are dominated by SN then the node can be fathomed, if not, the node is still
promising and may lead to efficient solutions. Although this test is very accurate,
it is also very expensive because all the points E have to be computed and
compared to the points of SN for each explored node. Thus, the computational
effort needed by this test may compensate the gain of exploring less nodes.

There exists a compromise solution which will always outperform the com-
plete computation and comparison. Actually, if we know the non-dominated set
of a node, it is sufficient to scan it until a non dominated point is found. There
is indeed no need to scan E entirely is we already know that the node will not
be fathomed. For more literature about bound sets, see [8] and [15].

Moreover, we could compare the pseudo efficient points as soon as they are
obtained until a non dominated point is generated. The whole non-dominated
set of a node will be computed and compared to SN only if it is dominated. In



this case, the node is fathomed so the expensive test has not been performed in
vain.

Algorithm 4 Fathoming procedure

Require: SN and the pseudo efficient set E of the current intermediate node
Determine IE the ideal vector of E

if IE is dominated by SN then

Fathom the current node
else

Seek at the beginning of the list L

repeat

Scan L forward
until A non dominated point xN is found or all the points of L have been scanned
if L does not contain non dominated points then

Fathom the current node
else

The node cannot be fathomed, branch on the next free binary variable
end if

end if

3.5 Tightening the search area

We have seen above that a good compromise can be used for the fathoming be-
tween the ideal vector and the whole efficient set, but the main problem remains
the cost of this method. In fact, if the first non-dominated point is "far" in the
list of pseudo efficient points, the algorithm will have to scan the list until it finds
it and conclude that the node cannot be fathomed. Worse, the same will happen
with the successors because the problem represented by the current node is a
relaxed version of the children nodes problems where pseudo efficient solutions
are at best as good as in the current node.

To avoid this problem we can simply add constraints to the original problem
to bound the objective functions when we know where to search for efficient
solutions. The procedure is described in Algorithm 5. On Figure 10, SN crosses
YN (P ), the non-dominated set of the problem P in the current node in point I.
As P is a partial linear relaxation of the problems that the children nodes will
generate, YN (P ) at least weakly dominates the non-dominated sets obtained
in the final nodes of the branch. In other words, none of the final nodes of
the current branch will provide solutions that dominate YN (P ). Consequently
we can restrict the search area by forbidding the area where YN (P ) is already
dominated by SN . Since the fathoming test presented before stops as soon as a
non-dominated point is found, we propose to only contract the search area and
not to split it when dominated points of YN (P ) occur somewhere else than is its
ends.



YN

I

z1

z2

SN

Fig. 10. New constraints to cut areas where the current branch cannot generate efficient
solutions.

Now, when a expensive computation is done to try to fathom a node, this
effort is not lost because it will improve the bounds on the objective functions
and fasten the process with the successor nodes.

3.6 Branching strategy

In order to speed up the fathoming in the combinatorial tree, a good branching
strategy has to be used. However, it is difficult to give an order to the variables
to be fixed in the branch and bound algorithm in a general context because we
don not know the constraint structure a priori.

Suppose that the scheme described in Section 3.5 is used during the process.
In each node of the tree, a sub problem is solved, the pseudo efficient solutions
are compared to Dex and the bounds on the objective functions are tightened
thanks to the first non dominated point found. The goal here is to fix the binary
variables to reduce as soon as possible the search area. To do this, the branching
could be done on the first relaxed binary variable entering or leaving the base in
the first non dominated solution of the MOLP problem.

On Figure 11, the efficient set of the current intermediate node is compared
to SN and they intersect is I. The two extreme efficient points of the current
node preceding and following I are A and B. If the solutions corresponding
to A and B differ by a pivot involving a binary variable, it could be worth to
branch directly on this variable. Thus we will consider two child nodes. The first
successor node will generate a locally non-dominated set including A and the
same with B for the second node. These sets are hoped to now intersect SN

respectively in IA and IB and consequently strengthen the constraints on the



Algorithm 5 Improved fathoming procedure

Require: SN and the pseudo efficient set E of the current intermediate node
Determine IE the ideal vector of E

if IE is dominated by SN then

Fathom the current node
else

Sort in a list L the pseudo efficient points according to their z1 value
Seek at the beginning of the list L

repeat

Scan L forward
until A non dominated point xN is found or all the points of L have been scanned
if L does not contain non dominated points then

Fathom the current node
else

if xN is connected to its predecessor then

Let xleft be the last dominated convex combination of xN and its predecessor
else

Let xleft be the predecessor of xN

end if

Seek at the end of L

repeat

Scan L backward
until A non dominated point x′

N is found
if x′

N is connected to its successor then

Let xright be the last dominated convex combination of x′

N and its successor
else

Let xright be the successor of x′

N

end if

On each direct successor of the current node, add or update the constraints on
the objective functions:
c1x ≥ c1xleft

c1x ≤ c1xright

c2x ≥ c2xright

c2x ≤ c2xleft

end if

end if



S
N Y

NA

Y
NB

B

A

I
IB

IA

z1

z2

Fig. 11. Sub problems generated by good branchings may improve the constraints on
the objectives.

objective functions more than I does. We can expect that this branching will
lead earlier to efficient final nodes or fathom earlier non interesting nodes.

3.7 Initialization of the branch and bound

In order to fathom nodes in the branch and bound tree, it is necessary to know
some "good" feasible solutions. However, a direct application of a branch and
bound algorithm starts with no feasible solution. Consequently, no fathoming
test can be applied in the first iterations of the algorithm, and the discovery of
"good" feasible solutions may happen very late.

In a specific case, providing a set of good feasible solutions would be the role
of an heuristic algorithm. But we work currently in a general context.

As we consider instances of mixed-integer linear programming that are rather
small in a single-objective viewpoint, an exact solution of problems defined by a
weighted sum scalarization should be done in reasonable time. Thus, we could
compute "some" supported efficient solutions to initialize the algorithm. Indeed,
if to solve one single-objective problem in reasonable time is realistic, the exact
solution of a large number of single-objective problems may not be negligible.
Thus, there are two possible choices : we use the classical dichotomous scheme to
obtain the set of all extreme supported non-dominated points (the optimistic ini-
tialization), another possibility is to truncate the dichotomous scheme by avoid-
ing the exact solution of a weighted sum problem if both points defining it are
"near" (to be defined by experiments) to obtain well dispersed points. Some
experiments will be necessary to observe the practical difficulty of these single-
objective problems and to choose if the dichotomous scheme should be executed
completely or not.



Next to this initialization, we obtain not only a set of good feasible solutions
but a set of supported efficient solutions. This is a major difference with an
initialization with an heuristic, which gives no information about the quality of
the obtained set. In a branch and bound algorithm, we use a set of potentially
efficient solutions we update during the enumeration. In particular, any solution
of this set could be deleted if a new better solution is found. This cannot happen
with the initial solutions that are proven to be efficient for the initial problem.
This information must be used as far as possible. We can for example use the fact
that all these solutions are supported and that we know the weight used to find
these solutions, to define cuts in objective space. These cuts are usable whatever
the used initialization. Adding cuts here does implies the same side-effects as for
a combinatorial optimization problem, indeed we consider only LP relaxations
in the node of the branch and bound tree, thus we solve MOLP problems in each
steps.

If we execute the full dichotomy, we obtain in particular the usual lower
bound set. Thus, we can use a set of cuts that restricts the search area to
(conv YN )N + Rp

≧
. Moreover, as we restrict our study to the bi-objective case,

the knowledge of lexicographic optimal points (whatever the initialization) allows
us to find the ideal and nadir points. The restricted search area is therefore given
by Figure 12.

If we cannot execute the full dichotomy, we can still use the same kind of cuts,
knowing the ideal and nadir points, and the weights used to obtain the known
supported efficient solutions (see Figure 13). In a more general configuration than
Figure 13, we should use the fact that we know the local ideal point between two
supported efficient points, if we have not considered the weighted sum problem
these points define.

3.8 From a global to a local branch and bound

Consecutively to these cuts, if we "delete" the area dominated by the known
supported non-dominated points, we can see that the area we need to explore
can be clearly partitioned. This leads to another idea, rather than to apply
a global multi-objective branch and bound algorithm (i.e. an algorithm that
computes a complete set of efficient solutions), it could be interesting to execute
several local branch and bound algorithms in each partition of the search area
by adding the cuts restricting the search to each partition. Figures 14 and 15
illustrate these partitions.

The advantages of several local explorations rather than one global explo-
ration are as usual, more nodes will be fathomed by infeasibility or dominance,
and better feasible solutions will be found faster (in a hoped virtuous cycle).
The drawback comes from possible redundancy of the obtained points.

This modification of the algorithm into a local branch and bound lead us to
consider the two phase method (see [17]). The first phase would be as usual the
dichotomous scheme to get the supported solutions (or at least a good subset of



z1

z2

Fig. 12. Search area restricted by cuts
in a case of the full execution of the
dichotomy.

z1

z2

Fig. 13. Search area restricted by cuts
in a case of a partial execution of the
dichotomy.

them) and the second phase would be the branch and bound applied locally to
each area. Experiments will provide a way to check if this strategy is interesting.

3.9 Exploration strategy

Initialization of a local branch and bound Suppose that we use the strat-
egy of doing the exploration with several local search areas. We consider the two
supported points delimiting the local area we are exploring. We know in partic-
ular the values of the binary variables for these two solutions and we can expect
that most of the efficient solutions located in the local area will have a significant
number of binary variables in common with the supported solutions defining this
local area. Consequently, we can directly consider both MOLP problems with
binary variables fixed with the same values as both supported solutions of the
local area (these problems are leaves of the branch and bound tree). By solv-
ing the obtained MOLP problems, we will obtain new feasible solutions and we
can hope to obtain "good" feasible solutions, to initialize the local branch and
bound algorithm. The main difference with the global initialization (computing
supported efficient solutions) is that there is no guarantee on the quality of the
obtained solutions. Thus, these solutions will be considered as usual potentially
efficient solutions.

Next to this initialization, the branch and bound algorithm (restricted to the
local search area) can be applied as usually (from the root node with no fixed
binary variable). Another possibility is to consider first a promising sub-tree of
the branch and bound tree. This sub-tree is defined from the root node given
by the last common node of both supported solutions defining the local search
area, i.e. the node with all common binary variables fixed.



z1

z2

Fig. 14. Partitions of the search area
restricted by cuts in a case of the full
execution of the dichotomy.

z1

z2

Fig. 15. Partitions of the search area
restricted by cuts in a case of a partial
execution of the dichotomy.

After this double initialization, the branch and bound algorithm can start
from the root node (with no fixed variable) with a hoped accelerated execution,
thanks to a set of very good feasible solutions.

4 Computational results

Some computational results are reported in this section from the implementation
of some of the improvements presented in this paper. The algorithm used is the
original branch and bound with SN instead of Dex. It is coded in C++ and runs
under a Core2Duo 1.8GHz machine.
The algorithm was tested in some randomly generated mixed 0-1 MOLP prob-
lems of various size. The coefficients were randomly generated within the follow-
ing intervals:

– [−10, 10] for the objective coefficients of the continuous variables.
– [−200, 200] for the objective coefficients of the binary variables.
– [−100,−50] for the right hand sides.
– [−20, 1] for the constraints coefficients.

No limit has been set on the sum of the binary variables to keep problems
longer to solve. In fact it would limit the possible combinations of binary values
and reduce the combinatorial tree to explore. Our goal is not to create test
problems with small tree but on the contrary to have potentially huge trees and
show our methods skip a non negligible part of it. The sparsity on the constraints
matrix is set to 100%.

The results obtained from the tested problems are shown in Table 4. The
parameters defined in the first column are: m the number of constraints, nL the



number of linear variables and nB the number of binary variables. The value of
each parameter represents the average calculated from ten problems per problem
type.
The times presented are really low compared to those presented in [13] and
especially [12]. This is mainly due to the differences between the computers used
for the experiments.

Table 1. Results

m× nL × nB Number
of
Nodes

Final
nodes

Efficient
points

Extreme
effi-
cient
points

Time
(ms)

Time
per
node
(ms)

10× 5× 5 30 7 8 7 37 1.2
20× 15× 5 27 7 13 13 140 5.2
20× 10× 10 90 12 14 13 1327 14.7
20× 5× 15 723 92 15 14 1243 1.7
30× 10× 10 174 36 13 10 3253 18.7

The three classes 20×15×5, 20×10×10 and 20×5×15 provide interesting
results. In fact, although the three of them have the same number of equations
and the same number of variables, their results greatly differ depending on the
ratio of binary variables :

– 20 × 15 × 5 is the class that requires the less time, mainly because of the
low number of binary variables. For this class, the combinatorial tree has 63
nodes and 42.9% of them have been visited on average. This large ratio is
balanced by the low cost of the solutions of the sup-problems.

– 20× 10× 10 is the "longest to solve" class : 1327 are necessary to explore 90
nodes (4.4% of the 2047 possible). The ratio of visited nodes is a lot lower
than for the previous class but the time elapsed per node is three times as
much.

– 20×5×15 requires by far the biggest number of nodes explorations, but has
on the contrary the lowest ration of visited nodes (only 1.1% of the 65535
possible). Moreover, only 1.7ms has been spent on each node on average,
which implies that the problems solved are rather simple compared to the
problems of the previous classes.

The ratio of visited nodes can be explained by the size of the tree. Indeed,
the larger is the tree, the greater the number of the possibly fathomed nodes
is, especially is we try to fathom them as soon as possible. Consequently, early
cuts in the tree will have less effect if the tree is small because the number of
remaining nodes will necessarily be smaller than in a large tree.
About the solution time, the ratio of linear variables seems to have an influence



but the results of the class 20 × 10 × 10 disallow to conclude that the lowest is
the ratio of linear variables, the simplest are the problems to solve. The time per
node for the class 30 × 10 × 10 is in the same range as the one of 20 × 10 × 10,
which could rather indicate that "well balanced" problems are the most difficult
to solve.

5 Conclusions

MOMILP problems are useful for a large number of situations. Multiple objective
functions are indeed useful to take several conflicting goals into account while
mixing binary and linear variables allows to formulate the parameters (contin-
uous) and the structure (discrete) of a system. In particular, Multiple Objective

Mixed Binary Linear Programming (mixed 0-1 MOLP) represents a natural ap-
proach to model problems where the system structure consists in questions which
can be answered by yes or no, like location problems.

In this paper we presented Mavrotas and Diakoulaki’s branch and bound
for 0-1 MOMILP problems and proposed several corrections and improvements.
We first corrected the way to represent the efficient solution set to keep track
of every efficient solutions, extreme or not. That lead us to use the set SN

instead of Dex. The main difference between them is that SN stores intermediate
(and sometimes dominated) points in addition to the extreme efficient points
considered by Mavrotas and Diakoulaki. Because it is able to describe exactly
the non-dominated set of a MOMILP problem, SN is preferable, but it is more
difficult to store and to update efficiently all the points. We proposed a solution
in the case of p = 2 objectives.

This improvement gave us a better upper bound set and we developed some
ideas to use this set as much as possible to add interesting bounds on the ob-
jective function and consequently to fathom dominated nodes earlier. We also
considered branching strategy that may be promising although we deal here with
general problems. Moreover, using the branch and bound procedure locally in
the two phases method instead of as a global algorithm is promising because
it may restrict the search areas where the branch and bound is used. Further
experiments should be done to have more insights on these propositions and the
MOMILP problems in general, especially with more than two objective func-
tions.

References

1. H.P. Benson and E. Sun. Outcome space partition of the weight set in multiobjec-
tive linear programming. J. of Optim. Theory and Appl., 105(1):17–36, 2000.

2. H.P. Benson and E. Sun. A weight set decomposition algorithm for finding all
efficient extreme points in the outcome set of a multiple objective linear program.
Eur. J. of Oper. Res., 139:26–41, 2002.

3. G.R. Bitran. Linear multiple objective programs with zero–one variables. Mathe-

matical Programming, 13(1):121–139, 1977.



4. G.R. Bitran. Theory and algorithms for linear multiple objective programs with
zero–one variables. Mathematical Programming, 17(1):362–390, 1979.

5. J. Climaco, C. Ferreira, and ME Captivo. Multicriteria integer programming: An
overview of the different algorithmic approaches. Multicriteria Analysis, pages
248–258, 1997.

6. RF Deckro and EP Winkofsky. Solving zero-one multiple objective programs
through implicit enumeration. European Journal of Operational Research, 12(4),
1983.

7. M. Ehrgott. Multicriteria optimization. Springer, 2005.
8. M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial opti-

mization problems. Computers and Operations Research, 34(9):2674–2694, 2007.
9. A. Geoffrion. Proper Efficiency and the Theory of Vector Maximization. 1967.

10. H. Isermann. Proper efficiency and the linear vector maximum problem. Operations

Research, pages 189–191, 1974.
11. H. Isermann. The enumeration of the set of all efficient solutions for a linear

multiple objective program. Operational Research Quarterly, pages 711–725, 1977.
12. G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed zero-one

multiple objective linear programming. European Journal of Operational Research,
107(3):530–541, 1998.

13. G. Mavrotas and D. Diakoulaki. Multi-criteria branch and bound: A vector maxi-
mization algorithm for Mixed 0-1 Multiple Objective Linear Programming. Applied

Mathematics and Computation, 171(1):53–71, 2005.
14. LM Rasmussen. Zero-one programming with multiple criteria. European Journal

of Operational Research, 26(1):83–95, 1986.
15. F. Sourd and O. Spanjaard. A Multiobjective Branch-and-Bound Framework:

Application to the Biobjective Spanning Tree Problem. INFORMS Journal on

Computing, 20(3):472, 2008.
16. R.E. Steuer. Multi criteria optimization: theory, computation, and application,

1985.
17. EL Ulungu and J. Teghem. The two phases method: An efficient procedure to solve

bi-objective combinatorial optimization problems. Foundations of Computing and

Decision Sciences, 20(2):149–165, 1995.
18. B. Villarreal and M.H. Karwan. Multicriteria integer programming: A (hybrid)

dynamic programming recursive approach. Mathematical Programming, 21(1):204–
223, 1981.


