Time-Series Constraints

Ekaterina Arafailova, Nicolas Beldiceanu, Mats Carlsson, Rémi Douence, Pierre Flener, M. Andreína Francisco R., Justin Pearson, and Helmut Simonis

8th December 2016

About Me

- Graduated from M2 ORO in 2015.
- Internship at EMN under supervision of N. Beldiceanu (EMN) and M. Minoux (LIP6).
- Started a PhD on the 1st of September, 2015.
- ► Thesis Director: N. Beldiceanu, Co-Supervisor: R. Douence.
- GRACeFUL project.

Collaboration

- 1. GRACeFUL people.
- 2. Helmut Simonis (University College Cork).
- **3.** Pierre Flener, M. Andreína Francisco R., Justin Pearson (The University of Uppsala).
- 4. Mats Carlsson (SICS)

Contents

Constrain the maximum of the minima of the valleys in the time series $\langle 5, 5, 6, 4, 6, 6, 4, 2, 4, 4, 1, 1, 1, 1, 3, 0 \rangle$.

A subsequence $\langle X_i, \ldots, X_j \rangle$ of $\langle X_0, \ldots, X_m \rangle$ is a valley if the signature of $\langle X_{i-1}, \ldots, X_{j+1} \rangle$ is a maximal word matching '>(>|=)*(<|=)*<'.

Constrain the maximum of the minima of the valleys in the time series $\langle 5, 5, 6, 4, 6, 6, 4, 2, 4, 4, 1, 1, 1, 1, 3, 0 \rangle$.

A subsequence $\langle X_i, \ldots, X_j \rangle$ of $\langle X_0, \ldots, X_m \rangle$ is a valley if the signature of $\langle X_{i-1}, \ldots, X_{j+1} \rangle$ is a maximal word matching '>(>|=)*(<|=)*<'.

Compositional Time-Series Definition by Multiple Layers of Functions

 $max_min_valley((5,5,6,4,6,6,4,2,4,4,1,1,1,1,3,0),4)$ holds

Space of Time-Series Constraints

inflexion

Regular Expressions \checkmark over $\{<,=,>\}$

↑Features

Space of Time-Series Constraints

Main Question

How to go from a compositional constraint definition to compositional combinatorial objects that can be used in different contexts, such as CP, MIP, local search, and data mining?

Main Question

How to go from a compositional constraint definition to compositional combinatorial objects that can be used in different contexts, such as CP, MIP, local search, and data mining?

Time-series constraints are very numerous: we cannot afford to consider each of them separately.

Applications of Time-Series Constraints

- ► Analysis of output of electric power stations [CP 2013] over multiple days.
- ► Power management for [Computing, 2016] large-scale-distributed systems.
- ► Trace analysis for Internet Service Provider. (CeADAR)
- ► Anomaly detection and error correction (Campus21) in building data.

Use a transducer:

- ▶ Input sequence: Handle the matching aspect
- Output sequence: Handle the computational aspect

Use a transducer:

- ▶ Input sequence: Handle the matching aspect
- Output sequence: Handle the computational aspect

Transducer for valley

Use a transducer:

- ▶ Input sequence: Handle the matching aspect
- Output sequence: Handle the computational aspect

Transducer for valley

Use a transducer:

- ▶ Input sequence: Handle the matching aspect
- Output sequence: Handle the computational aspect

Transducer for valley

Automaton for max min valley

Use a transducer:

[Constraints, 2016]

- ▶ Input sequence: Handle the **matching** aspect
- Output sequence: Handle the computational aspect

Transducer for valley

Automaton for max min valley

$$\frac{5}{s} \xrightarrow{\text{out}} \frac{5}{s} \xrightarrow{\text{out}} \frac{6}{s} \xrightarrow{\text{out}} \frac{4}{r} \xrightarrow{\text{found}} \frac{6}{t} \xrightarrow{\text{maybe}_a} \frac{6}{t} \xrightarrow{\text{out}_a} \frac{4}{r} \xrightarrow{\text{maybe}_b} \frac{2}{r} \xrightarrow{\text{found}} \frac{4}{r}$$

Implementing Time-Series Constraints

- ► CP: Reformulation of automata with accumulators*
- ▶ MIP: Linear reformulation of automata with accumulators**
 - * [Constraints, 2005], ** [CPAIOR 2016]

Goal: Address the combinatorial aspect of time-series constraints.

Method: Exploit the compositional nature of time-series

constraints at the combinatorial level.

Input

- ► Time-series variables X_i with i in [1, n] over their domains [a_i, b_i]
- An automaton with accumulators for a time-series constraint with
 - ▶ a set of states *Q*;
 - an input alphabet Σ;
 - ▶ an *m*-tuple of integer accumulators with their initial values

$$I = \langle I_1, \ldots, I_m \rangle;$$

▶ a transition function $\delta: Q \times Z^m \times \Sigma \to Q \times Z^m$.

Input: example

Automaton for nb valley

$$\frac{5}{s} \xrightarrow{=} \frac{5}{s} \xrightarrow{<} \frac{6}{s} \xrightarrow{>} \frac{4}{r} \xrightarrow{<} \frac{6}{t} \xrightarrow{=} \frac{6}{t} \xrightarrow{>} \frac{4}{r} \xrightarrow{>} \frac{2}{r} \xrightarrow{<} \frac{4}{t}$$

$$\frac{5}{0} \xrightarrow{=} \frac{5}{0} \xrightarrow{<} \frac{6}{0} \xrightarrow{>} \frac{4}{0} \xrightarrow{<} \frac{<}{0} \xrightarrow{>} \frac{6}{1} \xrightarrow{=} \frac{6}{1} \xrightarrow{>} \frac{4}{1} \xrightarrow{>} \frac{2}{1} \xrightarrow{>} \frac{2}{1} \xrightarrow{>} \frac{4}{2}$$

Goal

Our Goal

A way to generate a model for an automaton with linear or linearisable accumulator updates, for example containing min and max.

Linear decomposition of automata without accumulators

Côté, M.C., Gendron, B., Rousseau, L.M.: Modeling the regular constraint with integer programming. In: CPAIOR 2007. LNCS, vol. 4510, pp. 29–43. Springer (2007)

Signature Constraints

Introduced variables: S_i over Σ with $i \in [0, n-2]$.

What do the values of S_i mean ?

$$S_i = '>' \Leftrightarrow X_i > X_{i+1}, \forall i \in [0, n-2]$$

 $S_i = '=' \Leftrightarrow X_i = X_{i+1}, \forall i \in [0, n-2]$
 $S_i = '<' \Leftrightarrow X_i < X_{i+1}, \forall i \in [0, n-2]$

Transition Function Constraints

Introduced variables: Q_i over Q with $i \in [0, n-1]$; T_i over $Q \times \Sigma$ with $i \in [0, n-2]$

Each transition constraint has a form:

$$Q_i = q \land S_i = \sigma \Leftrightarrow Q_{i+1} = \delta_1(q, \sigma) \land T_i = \langle q, \sigma \rangle, \\ \forall i \in [0, n-2], \ \forall q \in Q, \ \forall \sigma \in \Sigma$$

Initial state is fixed:

$$Q_0 = q_0$$

Accumulator Updates

Accumulator updates

 R_i over [a, b] with i in [0, n-1]; T_i over $Q \times \Sigma$ with i in [0, n-2].

- $R_0 = 0$
- $T_i = \langle r, \rangle \Rightarrow R_{i+1} = R_i + 1, \forall i \in [0, n-2]$
- $T_i = \langle q, \sigma \rangle \Rightarrow \mathsf{R}_{i+1} = \mathsf{R}_i, \forall i \in [0, n-2], \forall \langle q, \sigma \rangle \in (Q \times \Sigma) \setminus \langle r, \rangle$

New Variables for the Linear Model

New variables

- ▶ Q_i is replaced by 0-1 variables Q_i^q for all q in Q. $Q_i^q = 1 \Leftrightarrow Q_i = q$
- New constraint: $\sum_{q \in Q} Q_i^q = 1, \forall i \in [0, \dots, n-1]$
- ▶ The same procedure for T_i and S_i wrt their domains
- \triangleright X_i and R_i remain integer variables!
- ► Every constraint of the logical model is made linear by applying some standard techniques
- ▶ The linear model has O(n) variables and O(n) constraints

Contents

Compositional Sharp Bounds: Contents

Context and Goal

Consider a $\mathbf{g}_{\mathbf{f}} - \sigma(\langle X_0, \dots, X_m \rangle, N)$ time-series constraint, for a regular expression σ , a feature \mathbf{f} , and an aggregator \mathbf{g} , with every X_i ranging over the same integer interval [a, b].

Context and Goal

Consider a $\mathbf{g}_{\mathbf{f}} - \sigma(\langle X_0, \dots, X_m \rangle, N)$ time-series constraint, for a regular expression σ , a feature \mathbf{f} , and an aggregator \mathbf{g} , with every X_i ranging over the same integer interval [a, b].

Goal: Derive formulae $\beta_{f,g}^{\mathbf{u}}$ and $\beta_{f,g}^{\ell}$ that are parametrised by σ and yield respectively sharp upper and lower bounds on the value of N.

Compositional Sharp Bounds: Contents

Computing a Sharp Upper Bound for the pair (min, max)

Consider a $\max_{min} \sigma(\langle X_0, \dots, X_m \rangle, N)$ time-series constraint with every X_i ranging over [a, b].

Goal: Compute a sharp upper bound on the value of N.

Computing a Sharp Upper Bound for the pair $\langle \min, \max \rangle$

Consider a $\max_{min} \sigma(\langle X_0, \dots, X_m \rangle, N)$ time-series constraint with every X_i ranging over [a, b].

Goal: Compute a sharp upper bound on the value of N.

Method:

1. Introduce the characteristics of a regular expression σ : the minimal difference between the domain upper bound b and the minima of the subseries, which is called the shift of σ and denoted by Δ_{σ} .

Computing a Sharp Upper Bound for the pair $\langle \min, \max \rangle$

Consider a $\max_{min} \sigma(\langle X_0, \dots, X_m \rangle, N)$ time-series constraint with every X_i ranging over [a, b].

Goal: Compute a sharp upper bound on the value of N.

Method:

- 1. Introduce the characteristics of a regular expression σ : the minimal difference between the domain upper bound b and the minima of the subseries, which is called the shift of σ and denoted by Δ_{σ} .
- 2. Explore the connection between this characteristics and the sharp upper bound on the value of *N*.

Compositional Sharp Bounds: Contents

Computing a Sharp Upper Bound for max min valley

Consider the $\max_{\min_{i}} \text{valley}(\langle X_0, \dots, X_8 \rangle, N)$ time-series constraints with every X_i ranging over [a, b] = [3, 6].

► The shift of valley is the smallest possible difference between b and the minima of valleys, namely 1 and is reached, for example, for valleys whose signature is '><'.

- ► The shift of valley is the smallest possible difference between b and the minima of valleys, namely 1 and is reached, for example, for valleys whose signature is '><'.
- ► The minimum of any valley is at least Δ_{valley} , which is 1, away from b, which is 6, thus $N \leq b \Delta_{\text{valley}} = 6 1 = 5$.

- ► The shift of valley is the smallest possible difference between b and the minima of valleys, namely 1 and is reached, for example, for valleys whose signature is '><'.
- ▶ The minimum of any valley is at least Δ_{valley} , which is 1, away from b, which is 6, thus $N \leq b \Delta_{\text{valley}} = 6 1 = 5$.
- ▶ This bound is reached for some ground time series.

- ► The shift of valley is the smallest possible difference between b and the minima of valleys, namely 1 and is reached, for example, for valleys whose signature is '><'.
- ▶ The minimum of any valley is at least Δ_{valley} , which is 1, away from b, which is 6, thus $N \leq b \Delta_{\text{valley}} = 6 1 = 5$.
- ▶ This bound is reached for some ground time series.

Compositional Sharp Bounds: Contents

Sharp Upper Bound for the General Case

Theorem

Consider a $\max_{min} \sigma(\langle X_0, \dots, X_m \rangle, N)$ time-series constraint, where σ is one of the 22 regular expressions and every X_i ranges over [a, b], then the sharp upper bound on the value of N is

$$oldsymbol{eta_{ exttt{min,max}}^{ exttt{u}}} = b - \Delta_{oldsymbol{\sigma}}$$

Compositional Bounds (Summary)

Contents

For the $ngroup(\langle X_0, \dots, X_m \rangle, \mathcal{S}, N)$ constraint, N is the number of maximal subsequences of $\langle X_0, \dots, X_m \rangle$ whose values are all in \mathcal{S} .

For the $ngroup(\langle X_0, \dots, X_m \rangle, \mathcal{S}, N)$ constraint, N is the number of maximal subsequences of $\langle X_0, \dots, X_m \rangle$ whose values are all in \mathcal{S} .

The ngroup($\langle 1, 0, 1, 1, 0, 0 \rangle, \{1\}, 2$) constraint holds.

For the $ngroup(\langle X_0, \dots, X_m \rangle, \mathcal{S}, N)$ constraint, N is the number of maximal subsequences of $\langle X_0, \dots, X_m \rangle$ whose values are all in \mathcal{S} .

The $ngroup(\langle 1, 0, 1, 1, 0, 0 \rangle, \{1\}, 2)$ constraint holds.

$$\xrightarrow[\text{ngroup}(\langle 1,0,1,1,0,0\rangle,\{1\},\textbf{2}) \\ \hline 1, 0, 1, 1, 0, 0 \\ \hline \\ \text{ngroup}(\langle 1,0,1\rangle,\{1\},\textbf{2}) \\ \hline \\ \text{ngroup}(\langle 0,0,1\rangle,\{1\},\textbf{1}) \\ \hline$$

For the $ngroup(\langle X_0, \dots, X_m \rangle, \mathcal{S}, N)$ constraint, N is the number of maximal subsequences of $\langle X_0, \dots, X_m \rangle$ whose values are all in \mathcal{S} .

The $ngroup(\langle 1, 0, 1, 1, 0, 0 \rangle, \{1\}, 2)$ constraint holds.

$$\xrightarrow[\text{ngroup}(\langle 1,0,1,1,0,0\rangle,\{1\},\textbf{2}) \\ \hline 1, 0, 1, 1, 0, 0 \\ \hline \\ \text{ngroup}(\langle 1,0,1\rangle,\{1\},\textbf{2}) \\ \hline \\ \text{ngroup}(\langle 0,0,1\rangle,\{1\},\textbf{1}) \\ \hline$$

not just a sum
$$(2 \neq 2 + 1)...$$

For the $ngroup(\langle X_0, \dots, X_m \rangle, \mathcal{S}, N)$ constraint, N is the number of maximal subsequences of $\langle X_0, \dots, X_m \rangle$ whose values are all in \mathcal{S} .

The $ngroup(\langle 1, 0, 1, 1, 0, 0 \rangle, \{1\}, 2)$ constraint holds.

$$\xrightarrow[\text{ngroup}(\langle 1,0,1,1,0,0\rangle,\{1\},\textbf{2}) \\ \hline 1, 0, 1, 1, 0, 0 \\ \hline \\ \text{ngroup}(\langle 1,0,1\rangle,\{1\},\textbf{2}) \\ \hline \\ \text{ngroup}(\langle 0,0,1\rangle,\{1\},\textbf{1}) \\ \hline$$

not just a sum $(2 \neq 2 + 1)$...how to compute the correction term -1?

Automaton for ngroup

Automaton for ngroup

Automaton for ngroup

Glue Matrix for ngroup

Automaton for ngroup

Glue Matrix for ngroup

Compositional Glue Matrices for Time-Series Constraints

Goal: For a transducer, derive a glue matrix that is parametrised by a feature and an aggregator.

Generic Glue Matrix for steady sequence = '=+'

Generic Automaton for g f steady sequence

Generic Glue Matrix for steady sequence = '=+'

$$\left\{ \begin{array}{l} C \leftarrow \operatorname{default}_{gf} \\ D \leftarrow \operatorname{id}_{f} \\ R \leftarrow \operatorname{default}_{gf} \end{array} \right\}$$

$$\left\{ \begin{array}{l} \neq 5 \\ C \leftarrow \operatorname{default}_{gf} \\ D \leftarrow \operatorname{id}_{f} \\ R \leftarrow \phi_{g}(R, C) \end{array} \right\}$$

$$\left\{ \begin{array}{l} C \leftarrow \phi_{f}(\phi_{f}(D, \delta_{f}^{i}), \delta_{f}^{i+1}) \\ D \leftarrow \operatorname{id}_{f} \\ C \leftarrow \phi_{f}(C, \phi_{f}(D, \delta_{f}^{i+1})) \end{array} \right\}$$

$$\left\{ \begin{array}{l} C \leftarrow \phi_{f}(C, \phi_{f}(D, \delta_{f}^{i+1})) \\ C \leftarrow \phi_{f}(C, \phi_{f}(D, \delta_{f}^{i+1})) \end{array} \right\}$$

Generic Automaton for g f steady sequence

Generic Glue Matrix for g f steady sequence

Corresponding Compositional Glue Matrices

Contents

Synergy of Sharp Bounds and Glue Matrices

Consider a $\mathbf{g}_{\mathbf{f}} \sigma(\langle X_0, \dots, X_m \rangle, N)$ time-series constraint where all X_i range over the same domain.

- ► Add sharp bounds for every prefix and every reversed suffix of X₀,..., X_m.
- ► Impose glue-matrix implied constraints on every prefix and every reversed suffix of X₀,..., X_m.

The **combination** of sharp bounds and glue matrices improves propagation.

Conclusion: clear separation between three levels

- ▶ Language: compositional description of constraints with aggregator g, feature f, regular expression σ
- ► Abstract Combinatorial Objects (transducers and formulae)
 - \triangleright Transducers for each regular expression σ (22)
 - (20)Parametrised bounds for each pair g,f
 - \triangleright Parametrised glue matrices for each regular expression σ (22)
- ▶ Multiple usages (synthesised code: Lagrange (135267))
 - CP: enhanced propagation (bounds, glue matrices)
 - ▶ Local search: constant time probing (glue matrices)
 - **Data mining**: range of variation of feature (bounds)

Separate definition from usage, be compositional at all levels

Publications on Time-Series Constraints

- N. Beldiceanu, R. Douence, M. Carlsson, H. Simonis. "Using Finite Transducers for Describing and Synthesising Structural Time-Series Constraints". Constraints'16.
- E. Arafailova, N. Beldiceanu, R. Douence, M. A. F. Rodriguez, P. Flener, J. Pearson, H. Simonis. "Time-series constraints: Improvements and application in CP and MIP contexts". CPAIOR'16.
- E. Arafailova, N. Beldiceanu, M. Carlsson, M. A. F. Rodriguez, P. Flener, J. Pearson, H. Simonis. "Systematic Derivation of Bounds and Glue Constraints for Time-Series Constraints". CP'16.
- E. Arafailova, N. Beldiceanu, R. Douence, M. Carlsson, M. A. F. Rodriguez, P. Flener, J. Pearson, H. Simonis. "Global Constraint Catalog, Volume II, Time-Series Constraints". CoRR.

- Arafailova, Ekaterina et al. (2016). "Time-series constraints: Improvements and application in CP and MIP contexts". In: *CPAIOR 2016*. Ed. by Claude-Guy Quimper. Vol. 9676. LNCS. Springer, pp. 18–34.
- Beldiceanu, Nicolas et al. (2005). "Reformulation of global constraints based on constraints checkers". In: *Constraints* 10.4, pp. 339–362.
- Beldiceanu, Nicolas et al. (2013). "Describing and generating solutions for the EDF unit commitment problem with the ModelSeeker". In: *CP 2013*. Ed. by Christian Schulte. Vol. 8124. LNCS. Springer, pp. 733–748.
- Beldiceanu, Nicolas et al. (2016a). "Towards energy-proportional Clouds partially powered by renewable energy". In: Computing, p. 20. url: https://hal.inria.fr/hal-01340318.
- Beldiceanu, Nicolas et al. (2016b). "Using finite transducers for describing and synthesising structural time-series constraints". In: Constraints 21.1, pp. 22–40.