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Abstract. Numerous problems coupling constraints and ordinary dif-
ferential equations (ODEs) rise in many different domains. We describe
a natural and efficient way to make this kind of problem fit the numerical
constraint satisfaction problem framework. In order to do it, using ODE
solvers, we show how to slightly adapt some standard filtering algorithms
from this framework in order to solve this kind of problem in a typical
branch and prune algorithm. Some problems are presented as examples
of applications.

1 Introduction

In a lot of domains, problems involving constraints with ordinary differential
equations appear (kinematics modeling, dynamics of mechanical systems in en-
gineering, biology, chemistry, and economics). Because these problems often con-
tain some uncertainty, it is natural to apply interval techniques in order to model
them. It is why many kinds of these problems have been treated (parameter esti-
mation, control, design, proofs for chaotic dynamical systems) by specific meth-
ods using interval techniques (see for example [23,10,13,12]) but this kind of
method is dependant of the problem they solve. Because these problems involve
variables belonging to continuous domains and having constraints on these, they
fit the numerical CSP framework (NCSP). One just needs to express the ordi-
nary differential equation of these problems as constraints and therefore gain
one of the advantages of the CP framework that is being able to separate the
problem declaration from the resolution process.

Some previous work ([4,5]) has been able to put these problems into the
NCSP framework. For that, a specific class of CSPs which includes ODE based
constraints was designed : CSDP (Constraint Satisfaction Differential Problem).
This class includes two kinds of variables : Some functional variables whose val-
ues are functions x(¢) from R to R™ (corresponding to the trajectories of the
ODE) and some real variables, called restriction variables, that correspond to
characteristic values of functions x(¢) (for example x(0) or maxo<;<1 x(t)). The
constraints of the CSDP include constraints acting on the functional variables



(corresponding to the ODE definition) and constraints acting on the restric-
tion variables (like the Value Restriction constraints, e.g. ||x(0)|| < 1, and the
Maximum Restriction constraints, e.g. maxo<;<1 x(t) < 1).

In this paper, we present a method that makes the ODE based constrained
naturally fit the NCSP framework. This is done by abstracting an ODE by its
solution operator which is a function that maps an initial condition and a time to
the corresponding final state. In particular, this method is able to handle prob-
lems as parameter estimation problems and two-point boundary value problems
to express them in the CP framework. Another requirement for this method is to
slightly tune the standard filtering algorithms in order to solve efficiently these
constraints. This is due to the expensiveness of the simulation of ODE required
to evaluate the solution operator.

In section 2, we will start by bringing some notations and useful results
from interval analysis used in this paper. We will see also notions about the
NCSP framework to finish by introducing some ODE solvers from litterature
and show briefly their resolution processes. Section 3 will be devoted to the
method used in order to include ODE based constraints in the NCSP framework.
In particular by defining the ODE solution operator and also by introducing
some filtering algorithms where we will need to make some improvement. At
the end implementation is presented to see exactly what kind of change has to
be done. Section 4 is dedicated to some experiments made on several problems
(academical one and also some from literature as well). Finally, conclusion and
an outlook on future research is given in Section 5.

2 State of the art

In this section are introduced notions needed for the reading of this paper. We
define some notations of interval analysis before overviewing the tools provided
by the CP framework in order to handle NCSPs. Finally we make an introduc-
tion about ODE and the methods used by interval solvers to provide validated
solutions.

2.1 Interval analysis

The birth of interval analysis is not dated with certitude but modern one ap-
peared in the 60’s due to Ramon E. Moore works ([16] and especially [17]).
Interval analysis allows, not to manipulate approximated values of real numbers
by machine representable numbers, but intervals where the values belong (for
example, 7 can be defined by the interval [3.14, 3.15]).

Notations In this paper and as seen above, intervals will be denoted by square
brackets : [x] = [2,Z] = {z € R| 2 < # < T} is an interval where z and T are
respectively lower bound and upper bound of the interval. IR will be the set of
closed intervals :

IR ={[z] =[z,7] | z,T € R,z < T}



For some interval [a], quantities are also defined :

— width of [a] : wid(a) =@ — a;
— midpoint of [a] : mid(a) = (a + a)/2;

Interval vectors are defined as vector with interval components and will be de-

noted by bold symbols ([x] is an interval vector also called box). In this case, we
can still define the midpoint for [a] € IR™ :

i
— midpoint of [a] : mid([a]) = ) ?

mid([a], )

Definition 1 (Interval Hull). Let S be a relation of R™. The hull of S (denoted
05S) is defined as the box in IR™ wverifying :

1. S COs;
2. Vx| elIR", SC[x] =05 C[z].

Interval Arithmetic Operations. Real based arithmetics can be easily ex-
tended to intervals as follows : let [a] and [b] € IR and ¢ € {+, —, x, /}. Interval-
arithmetics are defined by

[a]ob] =0{zoy | x €la],y € [b]}, 0 ¢ [b] when o=/ (1)

For each operator (X is omitted in the notation), we can define its proper cal-
culation algorithm :

la) + o] =[a+b, a+b
[a] = [b] = [a— b, a—b]
[a] [b] = [min {ab, ab, @b, ab}, max {ab, ab, ab, ab}|
[0]

The extended interval division. As we can see the calculation algorithm for the
interval division can lead to an issue if 0 belongs to the denominator. This can
be improved as follows :

1 1 1

0efz]elR= — = |—00, —| U |=, 400
[x] z T

The extended interval division is useful when inclusion of the result has to be

done (As for example in the multidimensional interval Newton method but it

will be shown later in Section 3.3).



Algebraic Properties. Interval operations do not have all the same proper-
ties as real operations as one could expect. Addition and multiplication remain
associative and commutative. Substraction is not the inverse of the addition :
[a] + [b] = [c] # [a] = [b] — [c] in general. The same observation can be made
for the division. All arithmetic operations are inclusion monotone : let [4], [B],
[a] and [b] € IR such that [a] C [A] and [b] C [B] then [a] ¢ [b] C [4] ¢ [B] with
o€ {+,—,%x,/}.

Interval-valued Functions. We can extend the definition (1) for elementary
functions (exp, In, sin, cos, etc.) as well. Finding the implementation for such
functions generally needs to study their monotonic parts. Let f : D — R with
D C R be an elementary function :

f([2]) = O{f ()| = € [=]} (2)

We can define the interval extension for functions being expression compound
of these elementary operations.

Definition 2. A function [f] : IR — IR is an interval extension of f : R — R
if :
V[z] € IR, {f(z)lz € RN [z]} € [f] ([z])

Remark 1. Interval extension for n-ary functions and function vectors can be
defined as well.

Definition 3 (Natural Interval Extension).

Let f: R™ — R be a continuous function on D € R™. The natural interval
extension of f is obtained by replacing each occurrence of a real variable by the
corresponding interval.

Ezample 1. Let f(x) = x — z and an interval [z] = [1, 2].

= (=) = [F1([L 2) = (1, 2] - [1, 2] = [-1, 1]

Theorem 1 (Fundamental Theorem of Interval Analysis [21]). Fvalu-
ation of a natural interval extension of an expression gives rise to an interval
enclosure of this function (Cf Example 1) :

{f(@)] = € [a]} < [£]([2])

Two phenomena explain this overestimation : the wrapping effect and the data
dependency. The wrapping effect[11] is due to the natural interval extension
that must results to the hull of {f(z)| « € [z]}. The data dependency rises when
we have multiple occurences in the evaluation of f (Cf. Example 1 : [f] ([z]) =

[—1, 1] while {f(z)| = € [z]} = {0}).

Theorem 2 (Moore’s Theorem[17]). Let f(z) : D — R be given by a real
expression having only one occurence of x. Then,

Vie] € IR : O{f(2)| = € [2]} = [f] ([=])



Definition 4 (Mean Value Extension). Let f : D C R be continuously dif-
ferentiable. Let [x] C D and let ¢ € [x]. Then the mean value extension of f over
[x] and centered at ¢ is defined by

[1((2] s 0) = fe) + [FT([2)([2] = ¢)

Another example of extension is the Taylor interval one. It computes a high

order polynomial approximation of the Taylor series expansion of the function
(see [17]).

Definition 5 (Taylor Interval Extensions[17]). Let f : D — R be a class
C"*1 real function. The n'™ order Taylor interval extension of f over an interval
[z] € D and centered at c € [z] is defined by

[F™] (=)

n!

([z] = ¢)"

Remark 2. The mean value extension is equivalent to the first order Taylor ex-
tension.

2.2 Numerical Constraint Satisfaction Problems

Numerical Constraint Satisfaction Problems (NCSPs)[6] are CSPs with con-
straints taking values over continuous domains.

Definition 6 (Numerical Constraint Satisfaction Problem (NCSP)).
An NCSP P = (V,C,D) is defined by a set of variables V = (x1,...,x,) tak-
ing their values in continuous domains D = (D1, ...,D,) and C = {C1,...,Cy,}
is a set of constraints. V can be seen as a vector x = (1, ...,%y) and D as a box

[x].

Definition 7 (Solution of a NCSP). A solution of a NCSP P is an instan-
tiation of the variables of V belonging in their domains of D and that verify the
set of constraints C. The set of solutions is denoted by Sol(P).

a € Sol(P) < ac [x] and (Vc € C,c(a))

To solve a NCSP, a way is to apply the branch and prune algorithm (see e.
g. [9] and references therein). This algorithm alternates branching over the do-
mains and pruning them using the constraints. The branch and prune algorithm
for NCSP (cf algorithm 1, page 6) produces two pavings (sets of boxes) B the
boundary bores and S the solution boxes. The algorithm is a skeleton that can
be applied to many specific requirements. It is the function Contracte that is
dependant of the problem and will prune the domain.

Definition 8. Contracte Let x € [x] C D.

(Ve € C,e(x)) = x € Contracte([x]).



Algorithm 1: Branch and Prune Algorithm.
Input: C = {c1,...,cm}, [x] EIR™, e >0
Output: S CIR", B C IR"

L A{[x]}; B=0;S 0
while £ # 0 do

([x], £) « Extract(L);

if IsSolutione([x]) then S — SU{[x]};

else if wid([x]) < e then B «— BU {[x]};

else
[x] < Contracte ([x]);
if [x] # 0 then
{x], [x"]} « Split([x]);
L= LU{[x],[x"}

end

end

end
return (S, B);

Remark 3. When Contracte contracts a box, no solution of the NCSP is lost
and all the solutions are eventually contained in one box from B or S.

Sol(P) C (US) U (UB) (3)

Definition 9. IsSolutione IsSolutione is used to compute the set of pavings S.
A box belongs to S if IsSolutione returns true. The semantic of this function
depends on the problem that is treated. Two kind of problems will be treated
here : the conjunction of inequality constraints and well constrained systems of
equations.

Conjunction of inequality constraints In this case only inequality con-
straints occur. It is convenient to group them into one inequality constraint
involving a vector valued function :

fR"—=R™ f(x)<0

true if [f]([x]) <0

false otherwise. In this case, US C Sol(P).

IsSolutione returns {

Well constrained systems of equations This involves n equations and n
variables with possibly inequality constraints. The constraint can be written as
this :

fx)=0,vxeD (4)

IsSolutione returns true if the existence of one unique solution in [x] has been
proved.



2.3 Rigorous ODE solving

Solving ODE using interval techniques presents two advantages : when a solution
is provided, the problem treated is guaranted to have a unique solution and an
enclosure of this solution is given. Several techniques have been introduced in
the past for solving ODEs.

Definition 10 (IVP). A classical first order ODE can be written as follows :
xX'(t) = h(x(t)) (5)
where h : R™ — R" is a vector field of class C! and t € R.

The solution usually contains a free parameter so in order to find a solution, one
must determine an initial value condition like this :

X(to) =Xg, tg €ER

Then it is called an initial value problem (IVP). Since there is often uncertainty
in the initial condition when we try to manage real problems, the initial condition
is more likely described as an interval vector :

X(to) S [Xo], to € R

After an integration, (5) can be rewritten as follows :

x(t) = x(to) +/0 h(x(7))dr (6)

We can replace the integral by a conservative approximation :

/O h(x(r))dr C [0, {/h((B)) (7)

where [B] is a bounding box enclosing all reachable states in the interval [0, ¢].
From (6) and (7), we obtain an interval enclosure of x :

x(t) € x(to) + [0, t|h([B]) (8)

Several validated solvers for computing rigorous bounds on the solution of
an initial value problem for an ordinary differential equation have been imple-
mented. For example :

VNODE-LP[19] (Validated Numerical ODE)

ValEncIA-IVP[24] (VALidation of state ENCLosures unsing Interval Arith-
metic for Initial Value Problems)

CAPDJ3] (Computer Assisted Proof in Dynamics)

Most of solvers are based on Taylor extension ([7,15,25,2]). The algorithm for
these solvers follow the same skeleton. It can be split into two steps :



1. Validate existence and uniqueness and then provide an a priori enclosure of
the solution :
—~ VNODE-LP : [B] in (8) is computed using the Picard-Lindel6f operator!
(see e.g. [22]) and the Banach fixed-point theorem (see for example [27]) that
provide the uniqueness and validation of the solution computed :

[BEHD] = 2%+ [0, 4] £((BY]) (9)

with [B(©)] = [2°].

While [BE+D] ¢ [BU)] [BU] is enlarged. If [BE+D] C [BU)], Picard
is iterated until [BUE+D] ~ [BUO]. If the iteration does not converge or
[BUE+D] become too large, the time ¢ is reduced. More details can be found
in [19]

— ValEncIA-IVP: [B] in (7) is replaced by [Zenci(t)] where :

[Tenet(t)) = Tapp(t) + [R(1)] (10)

Zapp(t) is an approximate solution of the IVP and [R(t)] is an interval con-
taining the unknown error terms. There are two ways to calculate the approx-
imate solution z4p,(t) : analytically using an easy-to-solve reference system
(by linearization generally) and numerically using non-validated numerical
techniques for the solution of IVP. In order to make Valencia-IVP a vali-
dated solver, [R(t)] must contains errors terms. The proof of the validation
for Valencia-IVP is in [1].

2. Compute tighter enclosure : Goal is to use the a priori enclosure to perform
a tighter enclosure. The most used approach is based on Taylor expansion
coupling with the mean value extension. To minimize the wrapping effect,
other techniques are performed (as Lohner’s QR factorization, see [18] and
reference therein).

3 Ordinary Differential Equations Based Constraints in
the Standard CP framework

In order to use filtering algorithms that will prune the domains, we need to make
the ODE fit the CP framework. This work must be done in both sides: ODEs
need to be managed to fix the NCSP framework when filtering algorithms also
need to take account of difficulties rising from simulating ODE. This Section
will first describe the ODE solution operator and filtering algorithms that are
designed for precised kinds of problems.

3.1 The ODE Solution Operator and its Derivatives

For a given ODE defined as above (section 2.3) that maps an initial condition :
x(tp) € R™ and a duration ¢ € R to a unique vector x(¢) (proven by the ODE
solver that is used), we are able to construct the ODE solution operator.

1 also called Cauchy-Lipschitz in French.



Definition 11 (ODE Solution Operator). Let ¢ : R” x R — R™ character-
1zed by
P(x(to), t) = x(to +t) (11)

is called an ODE solution operator.

The role of this ODE solution operator is to abstract the simulation of the ODE
from the CP framework point of view and to allow to manipulate ODEs like any
other functions. Since the filtering algorithms introduced need the Jacobian D@
of the function to be applied, we define it also :

Let D@ : R" x R — R™*("+1) he the Jacobian of ®.

D& = (Dy® | D,d) (12)

with Dx® : R™ x R — R"*" being the ODE first variational equation, which is
a linear non-autonomous ODE of dimension n? and D@ : R” x R — RX" =
h(®(x,t)). It results that evaluating ¢ and D@ is equivalent as solving an ODE of
dimension n? +n. Since computation of ODE by ODE solvers is really expensive
in term of time, the evaluation of this ODE solution operator should be as less
as possible. It is why filtering algorithms have to be slightly modified to take
into account this kind of difficulty.

3.2 Filtering algorithms

Filtering algorithms used depend on which kind of problem has to be solved. We
need so to define them for each kind of problems and also show what kind of
changes has to be done during the implementation of this method.

Conjunction of inequality constraints Two filtering algorithms are used for
this kind of problems.

The first one is a simple interval enclosure test that consists of computing
[f] ([x]) and see if all the box can be rejected. Let [x] be a box, [x] can be rejected
regarding the constraint f(x) < 0 if [f] ([x]) > 0 (where here 0 means the vector
as same dimension as f(x) and having only 0 for components).

Remark 4. Tt is important to notice that, because [f] ([x]) leads to an overesti-
mation of the range of f, having [f] ([x]) < 0 does not mean for sure that the
initial box [x] contains solutions.

The second filtering algorithm is the unidimensional interval Newton that
allows to remove a slice of [x] as follows : the domain [z;] of the variable x; is
contracted to the new domain [1‘9] applying the unidimensional interval Newton
for each component of f(x) <0 :

W= ) @ g[8+ 0o+ Y land(ld - 50)) 0] (13)

[aij] oy



where [A] = [Df]([x]), [b] = [f](X) for some X € [x], usually the midpoint of [x].
The addition of the interval [0, oc] allows applying the interval Newton, which
is defined for equality constraints, to inequality constraints: Indeed, f(x) <0 is
equivalent to 0 € f(z) + [0, 00] and the interval Newton for equality constraint
is actually applied to the latter.

Well constrained systems of equations Here also, two filtering algorithms
can be used. In parallel with the simple interval enclosure from conjunction of
inequality constraints, the constraint f(x) = 0 implies that if 0 does not belong
to the interval extension [f] ([x]), that means that the box x can be rejected.

The second filtering algorithm is the multidimensional interval Newton (the
Krawczyck version[21] where some preconditionning is performed). It can con-
tract the domain [x] to the new domain [x'] as follows:

[x] = (( = ClAD ] + C[b]) N [x] (14)

where [A] and [b] are defined like in (13), and C = (mid[A])~*.

Remark 5. In the branch and prune algorithm for well constrained systems
of equations, the multidimensional interval Newton role plays Contracte and
IsSolutione as well since this filtering algorithm is able to prove the existence
and unicity of solution (again, see [21]).

3.3 Implementation

The implementation of this method made for the experiments has been created
in C++ with the use of Profil/Bias[14] for interval computation. For the ODE
solver, because we need evaluations of f over [x], x € [x] and [Df] over the
whole domain, our choice went to CAPD that provides all the requirements in
order to apply the filtering algorithms.

Remark 6. In CAPD, computation of f(mid([x])) requires a separated simula-
tion of the ODE when the one for [f](mid([x])) and [Df] (mid([x])) are per-
formed at once.

Unidimensional interval Newton This algorithm has been implemented in
order to manage constraints of type f(x) € [y].

For saving computational time, f(X) and [D f] ([x]) are not calculated at each
improvement made on one component of x. The advantage of this is that ODE
solver will be called less time, saving the computational time. But it means also
that the pruning will be less efficient than applying the regular unidimensional
Newton method.



Algorithm 2: Unidimensional Interval Newton algorithm.

Input: function f: R™ — R™, box [x], interval matrix [Df] ([x]), box [y]
Output: new contracted box [x]
% o mid([x));
for int i from 1 to n do
for int j from 1 to m do
(5] = F(R)5 4 2oy [DFT(XDs (0] = Xi);
b} i) 0 (i) — % 1 = (k) + %)
if [x;] = @ then
| return False;
end

else
| return True

end
end

end

Algorithm 3: Gauss Seidel algorithm.

Input: Interval matrix [A], box [x], box [b]
Output: new contracted box [x]
for all components [x], of [x] do

[x], — [x], N [b]i*[[A]i‘X[x].

if [x], = @ then return False;

I ’

end
return True




Multidimensional interval Newton This uses the Gauss Seidel method made
to solve linear systems of equations of the form [A] x [x] = [b] (Cf. Algorithm
3).

An improvement of the method is to precondition the system by multipliying
each member of the system of equation so that the problem become easier to
solve. The solutions of [A] [x] = [b] are similar to a second system of the form
P [A] [x] = P[b]. P is chosen so that P [A] approximates the diagonal matrix (P
should be then an inverse of [A] : [A]™"). This improvement is usually made by
computing the inverse of D f(mid([x])) but, because it requires the computation
of it, we use instead the inverse of [Df] ([x]). It means the approximation of the
diagonal matrix will be poorer but saves computation time.

Algorithm 4: Multidimensional interval Newton algorithm.
Input: function f:R" — R™, box [x]
Output: new contracted box [x]
boolean stop <« False;
while not stop do
b — [DF) (<))~ x —f(mid([x]));
[A] — [DF) (%)~ x D ()
[y] — [x] = mid([x]);
if Gauss_Seidel([A], [y, [b]) and [x] N ([y] + mid([x])) # @ then
| stop < there is no improvement;
end

end

Remark 7. We can see that all these filtering algorithms are independent of the
nature of f and can be used in order to solve constraints that do not involve
ODEs.

3.4 Treated problems : parameter estimation problems

In parameter estimation problem, given some constraints, one needs to find the
initial conditions of an IVP that satisfy these constraints. In real problems, these
initial conditions are oftently given by measurements or observations, it is why
intervals fit well to this kind of problem. A parameter estimation problem comes
with an ODE x/(¢) = h(x(t)) and measurements (¢;, [m;]) for i € {1,...,p} that
dictates the possible trajectories the ODE can have. A solution is then to find
initial conditions for the ODE that satisfies

x(t;) € [my] for i € {1,...,p} (15)

Seen through the NCSP framework, a parameter estimation problem P =
(V,D,C) with



x = (x1,...,x,) the initial conditions we are looking for:
x| = ([x1],- .., [Xn]) is the initial search space for these conditions;
are the constraints that dictate the possible trajectories of the ODE with

R4
-D
-Ca

C={P(x,t1) € [m],...,D(x,tp) € [my]}. (16)

All constraints are inequality ones so this kind of problem can be solved
using the evaluation test and the unidimensional interval operator as explained
in Section 3.2.

To save computational time, a special care has to be made in the constraints.
Each constraint ¢; require to simulate the ODE until time ¢; and so must not to
be treated independently. Sorting the constraints by increasing time will allow
to perform only one simulation of the ODE for all measurements. Moreover,
simulating ODE with large intervals can lead to an issue that make the ODE
solver unable to reach the last time ¢; for a given box.

An other improvement is then to keep the results that has been calculated
so far and to replace the missing one by the interval [—oo, cc0]. This way the
filtering algorithm employed will be still able to contract some variables that
could be calculated (and then reduce the size of the treated box).

3.5 Treated problems : Two-point boundary value problems

In the Two-Point Boundary Value Problem (TPBVP) we still are given an ODE
x'(t) = h(x(t)) and n equality constraints g; on x(¢g) and x(¢1). There we need
to find trajectories of the ODE that will satisfy the ODE and the constraints
9i(x(t0),x(t1)) = 0. As the trajectory is completely defined by its initial condi-
tion, the TPBVP actually consists of finding the initial conditions that give rise
to such trajectories.

Such a problem perfectly fits the NCSP framework since these initial condi-
tions are the solutions of the NCSP (V, D, C') where:

- V=x=(z1,. :Cn) are the initial conditions we search;
-D=x=(x 1] [ n]) is the initial search region for the initial conditions
— C={c1(x)=0,...,cn(x) =0} are the constraints with

ci(x) = gi(x,P(x,t1 — to)) (17)

Note that once [@]([x],t1 — to), [®](mid[x],t1 — to) and [DP]([x],t; — to) are
evaluated then [¢;]([x]), [¢;](mid[x]) and [D¢;]([x]) directly follow from (17). In
particular using the chain rule we obtain

dgi(u,v)
ou

0g;(u, v)

De;(x) = p

+ Dy ®(x,t1 —tg) (18)

(xy) (x,y)

to). The expression (18) can be evaluated for interval argu-

with y = &(x,t; —
[@]([x]) and [DP]([x]).

ments using



4 Experiments

In this section, after having made some ODE solver comparisons, we study differ-
ent examples of the introduced problems to illustrate with computational time
and solution analysis the behaviour of our method. The algorithm has been
written in C4++, CAPD library was used to integrate the ODE system in each
problem. All problems were solved on an Intel Pentium SU4100 1.3 GHz machine
running on Linux.

4.1 ODE solver comparison

Let define an example of ODE to simulate that will allow to compare results from
different solvers. For that we chose to simulate the Van Der Pol Oscillator whose
van der Pol introduced as a mathematical model of self-sustained oscillations of
a triode circuit with a cubic current-voltage characteristic [26]. This oscillator
evolves in time according to the second order differential equation :

2" (t) = n(1 = (a()*)a’ (t) + (1) (19)

that can be rewritten as :

2y (t) = p(l — (21(t)))22(t) — 21(t)
We have tested through this example the behaviour of VNODE-LP and CAPD
when this ODE is simulated until a given time. We set u = 4 and start by
simulating the ODE with scalars as initial conditions : z1(0) = 2 and x2(0) = 0.
The simulation is performed until ¢ = 200 is reached.

We show the results of the simulation for VNODE-LP and CAPD (Fig. 4.1).
As we saw, ODE solvers compute dynamic time step in order to simulate ODEs.
For simulation to ¢ = 200, VNODE-LP performed 1838 different steps for a total
computation time of 2.20 secondes. For CAPD, 2809 steps have been performed
for a computation time of 2.28 secondes. This preliminary test shows that CAPD
performs more steps in the same computation time as VNODE-LP and moreover
it computes the derivative as well.

This test was exactly one of the normal uses of these solvers because initial
conditions were scalars. But in ordinary differential equation based constraints,
initial conditions are more likely intervals in real problems. We perform then a
second experiment to see the behaviour of solutions during simulation for both
solvers when intervals occur. This example has been chosen because it returns
that solvers are not good at integrate it for initial interval conditions that are
too large. Empirically found, the intervals used for simulation can not be larger
than le™7.

Figure 2 shows the evolution of the diameter max of the solution computed
at each time step. Simulation has been carried on until ¢ = 100 for initial con-
ditions close to the first simulation shown: Here 21(0) = 2+ [~7¢7%,7¢7%] and
22(0) = 0+[—7e~5, 7e~%] We see clearly that CAPD can manage better the over-
estimation at the begining of the simulation to then be as “bad” as VNODE-LP
at the end.



Fig. 1. Simulation of the Van Der Pol oscillator by VNODE-LP (left) and CAPD
(right)

4.2 Parameter Estimation Problems

We consider the ODE as follows :

x'(t) = Ax(t) with A = (O} 0%1) (21)
that is equivalent to :
2 (t) = 0.121(t) + 22(t)
{ xé(t) = -1 ét) + 0.12552@) (22)

This ODE describes a spiral unrolling toward infinity (as seen in Figure 3).

A parameter estimation problem involving (21) could be as this one: We look
for the initial conditions x(0) € R? for which the trajectories of the ODE belong
to a given box [m;] at time ¢; (as shown with (16)).

As the ODE is linear, its trajectories can be formally computed using the
matrix exponential:

x(t) = e"x(0) (23)

Measurements can be taken using (23): m; = e!#4x(0) where we have fixed x(0).
We define [m;] = m; £ 0.25. Each constraint &(x,t;) € [m;] is equivalent to
finding the parallelepiped {(etiA)fl u:u € m;+0.25}. We perform a resolution
process using values got by a preliminary simulation of the ODE (shown in
Table 4.2).

Because this problem is a conjunction of inequality constraints, Branch and
Prune using the unidimensional interval Newton method as filtering algorithm
is applied. Figure 4 shows the results of this problem. Green boxes belong to the
solution boxes § when red ones belong to the boundary boxes 5



Fig. 2. Comparison of the maximal diameter evolution on VNODE-LP and CAPD

0.006

0.005

0.004

0.003

0.002

0.001

e

ik g

X

5

EE S

T
VNODE-LP
CAFD

XX

b

Rise

+%

40 60

80

100

2

4

6

8

m;

(0.602335, -1.6189)

(-2.10414, 0.153895)
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Table 1. Measurements used for a parameter estimation problem.




Fig. 3. Simulation of the ODE (21) for initial conditions (1,
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Fig. 4. Results for the spiral parameter estimation problem



4.3 Two-point Boundary Value Problems

We define an academic example of two-point boundary value problem. Let a
second order ODE be :

y'(t) = =M1 +y) t=10,1] (24)
which can be rewritten as this first order ODE :

(1) = w2(t) B
{w’z(t) =—-X1+x(t)’ t=10,1] (25)

The two-point boundary problem P is to find 22(0) € [29] and z5(1) € [a}]
such that 21(0) = 0 and z1(1) = 0 or, introducing the ODE solution operator :
Let x2(0) € [29] and (1) € [x3],

(2(0), 22(1)) € SOl(P) < &(0, 2(0)) — (w2?1)> - (8) (26)

Setting [23] = [0,20] and [2}] = [-20,0], it took 1.3 secondes for the method
to find the two solutions shown in Table 4.3. And most of all the solutions have
been proven by the mulidimensional Newton method.

Solution enclosure Width
1.036609890[4386868,7934569] |3.547701e-10
16.06565187[24917276,33426986]| 8,50971e-10
Table 2. Solutions for z2(0)for the two-point boundary value problem

Remark 8. The simulation of the ODE for the initial intervals was impossible
for CAPD. In order to solve it, we must perform some bisections of the box.
It shows the default of ODE solvers that are not always computing simulations
when initial intervals are too large.

5 Conclusion

We have seen a method that allow to solve homogeneously problems with con-
straints involving ODEs. This method make this kind of problem being declared
and processes in the NCSP framework. Advantages as the separation of the
resolution process and its declaration would allow to work more generally on
different problems that have until now only dedicated methods. However, the
spine of this method is the integration of the ODE made by ODE solvers. We
have seen that these solvers can easily calculate sharp enclosures of solutions
but therefore, if the initial conditions are large interval or when a difficult ODE
occurs (like for stiff ODE), this method shows its limits.



This method will benefit from improvements made both in the NCSP frame-
work and the ODE solving. Future works should be turned to the ODE solver
and certainly in the progress that could be made for larger interval initial con-
ditions. And also with all improvements possible from the NCSP framework will
make this method better. This method has been described also in a paper that
will appear at CP 2010 conference|[8]. That will allow to obtain a certain visibility
and feedbacks in order to improve this method as well.
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