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Abstract. We consider a single machine multi-objective scheduling problem
with each taskj having a release date; and a due datej;. The goal is to
find a set of non-dominated solutions with individual tardiness of eadh Tas

as the objective, which is a task specific objective. The problem is demasted
1|r;|# {7} }. A branch and bound procedure is proposed.

1 Introduction

Scheduling concerns the allocation of limited resourcéso(known as machines) to
the given set of tasks over time. Different components ofledualing problem are
the tasks, constraints, resources and the objective inxtScheduling of tasks to re-
sources is to find a processing start time for each task. Formgéesmachine, there is
only one resource available for the processing of taskse tth@es not arise the question
of assigning a task to resource and hence the goal is to deteenschedule of tasks.

A single machine scheduling problem consists of g sdttasks, with each taske
J having release datesand due daté;, that arrives on a single machine to be executed
for a processing timg; and completion time&’;. It is desired to sequence the jobs on a
machine in a particular order to optimize certain objedivehis study focuses on the
1|r;|# {T;} problem. This is am-objective combinitorial optimization problem with
tasks to be executed on a single machine.

In the case where all the characteristics of the problentgssing time of each op-
eration, release datestc) are known, we speak of a deterministic problem. Conversely
some of these characteristics may be random variables afrkpoobability law. In this
case we speak of a stochastic problem. If all the data of thielgm are known at the
same time we speak of a static problem. For some problembgadsie may have been
calculated and being processed when new operations arritleeisystem. Then the
foregoing schedule has to be re-established in real times& broblems are said to be
dynamic.

Scheduling Definitions

Definition 1. A taskj is a fundametal entity described in time domain by a staretim
and finish time, that is executed for a processing time on tireresource (Squirrel &
Lopez, 1999).



A task is associated with it a release daie specifying the time of arrival of task
in the scheduling system, a processing timg,the time for which task executes on a
machine, a due daté,;, the date at which job is promised to be completed. Number
of tasks in the problem is denoted ageflecting the problem size, while number of
tasks available for processing at any instgns denoted as;. A resource is required
to perform tasks.

Definition 2. A resource M), € M is any physical or virtual entity of limited capacity
and/or availibility, allocated to the tasks competing for i

The term machine is generally used instead of resource mstteduling literature.
A resource can be classified as renewable and non-renevidtewable resources
become available again after use, while non-renewableuress disappear after use
(T’kindt & Billaut, 2006). Usually a limit on the capacity dfie resources is the major
constraint besides otheiss. a machine cannot perform several tasks at the same time.

A constraint represents a condition which definitely mustdspected. Constraints
are not restricted to the limitations on resource, but todegision variable involved in
the problem. A constraint may be viewed as a resticted seilaésg that these decision
varibles can take. For example, the occurrence of differeleise dates constitutes a
constraint which must be stated precisely. A solution of lsedaling problem must
always satisfy a certain number of constraints.

Definition 3. A processing sequence)(represents a permutation of the tasks compet-
ing for a resource, or an order in which tasks are to be proeessn a given resource.

A processing sequence therefore contains no explicitimédion about the times at
which the various operations start and finish. Timetablsgefered as the process of
deriving a processing schedule from a processing sequénesefich, 1982).

Definition 4. A scheduled) usually refers to an allocation of jobs within a more com-
plicated setting of machines, allowing possibly for pregons of tasks by other tasks
that are released at later points in time (Pinedo & Chao, 1999

A feasible schedule is a schedule that satifies all the cinsirof the subject
scheduling problem. These constraints, generally refasedard constraints must be
staified or the schedule is infeasible. Similarly we speakodif constraints, as the con-
straints that are desired to be satified, but do not causeltegisle to be out of feasible
space, if unsatified. These are refered as objectives ofrtimgm.

Definition 5. An objective reflects the desired characteristics in thetsmh to find for
a scheduling problem by executing a given set of tasks on #uhinmes in a certain
sequence.

Different performance measures may be used for the evaluafi schedules in
regards with the objectives under consideration. The tilbgscreflect the characterics
desired in the final schedule. These may be based upon caonptietes, due dates or
inventory, utilization costtc. Two performance measures are equivalent if a schedule
which is optimal with respect to one is also optimal with mspto the other and vice
versa.



The most studied objective related to completion times isimmizing the comple-
tion time of the entire schedule, known as makespan and eeérasC,,.,, defined
as:

Chax = max Cj
1<j<n

The objective can also a function of the due dates. The lageokjob; is defined
asL; = C; — d;, which is positive when jolj is completed late and negative when it is
completed early. The maximum latenegs,.., is defined as:

Lyax = max L
1<j<n

One of the most important objectives to deal with in a manufatg system is to min-
imize tardiness which can be measured through severalrpsafice measures. The
tardiness of a job is computed &§,= max(0, L;).

The most used performance measure to evaluate the tariirtbesmean tardiness
(i.e. T=X; T; /n). The maximum tardinesse.

T, = max T}
max 1<5<n VB

can be of great interest for the decision-maker in the shaptwik an indication of a
worst case behavior during a particular experiment. Thebwuraf tardy jobs is defined

as,
U — 1 ifL;>0
7710 otherwise
The conditional mean tardiness described as
Zj Tj
Zj Uj

measures the average amount of tardiness for the comptdtedvhich are found to be
tardy. The two large families of objectives are:

CMT =

— minimax, which represent the maximum value of a set of fumgtito be minimised,
and
— minisum, which represent a sum of functions to be minimised.

Table 1: Some Performance Measures

Name Notation Regular Type
Makespan Clnax yes minimax
Maximum lateness Linax yes minimax
Maximum tardiness Tinax yes minimax
Total tardiness 25 T yes minisum
Total weighted tardiness >, w;T; yes minisum
Mean tardiness T yes minisum

Conditional mean tardiness CMT no minisum




Table 2: An example problem to illustrate Regular measure

J_m pj 4
1 0 4 8
2 2 3 8
3 4 4 12
1 2 3

(b) 02: Cinax=16,CMT=3.5

(€) 03: Cmax=17,CMT=3.33

(d) o4: Cinax=18,CMT=4.33

Fig. 1: Schedules for problem in table 2 illustrating pemfiance measures

Performance measures can be classified into regular ongéb@salthat are not.

Definition 6. A regular measure of performance is one that is non-decnggisi the
completion time€’y, ..., C,, (S.French, 1982). ThuR is the functionCy, Cs, ...... ,Cp
such that

Maximum completion time(.,..,) and mean tardinesg} are examples of regular
measure wheredsMT is not a regular one. Table 1 lists a few performance measures
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Fig. 2: Regular and Non Regular Measures

In Table 3, is given an example for illustrating the diffecerbetween regular and non-
regular performance measures.

Four different solutions are illustrated in fig. 2 and theues of performance mea-
sures are illustrated in fig. 2 for problem of table 3. If we qare, for example, the
o2 andos schedules, although;(o2) < C;(o3), Vs, the CMT obtained is less for this
schedulei.e.

C7(02) < C’j(O’g),Vj, Rig C]V[T(UQ) < C]\/[T(U?))

Hence CMT is a non-regular measure.

Multi-objective Optimization

Generally, single objective scheduling problems make thgnpart of the literature

in machine scheduling domain. However, it is often desietidve multiple prefer-

ences for a solution to find. These preferences may lead ftiatory objectives. Thus

maximizing one objective may degrade the other objectivestunacceptable level. It
is required to find a compromised solution satisfying thdgeaiives simultaneously,
although may not be optimal with respect to a single objectiv

Multi-objective (MO) optimization is the process of simareously optimizing two or

more objectives subject to certain constraints. A muljeotive optimization problem

is defined by (Ehrgott & Gandibleux, 2000) as

min f(x),z € X, wheref(z) = [f1(x), f2(x), ., fy()]"

with eachf(x) € Y, p being the number of objective is the set of all possible
solutions and” is the objective space.



10 | o o Dominated
. oNon-dominated
8 |
O ] O
6 1 I e}
< o o
4 - o
o O
2 o
o
01 I

Fig. 3: A bi-objective space with dominated and non-dongdegolutions

We speak of dominance of solutions as the way to compare thésts to a multi-
objective problem. Ifx;,zo € X andVk, fi(z1) < fi(x2), with at least one strict
inequality, we sayr; dominateszs (z1 > x2) and f(z1) dominatesf(zs). A fea-
sible solution € X is efficient or pareto optimal if there is no othere X such
that vk, fr(z) < fr(&) with at least one strict inequality.e. there is no solution at
least as good as. As 7 is efficient thenf (%) is called non-dominated point (Ehrgott &
Gandibleux, 2000). It is generally required to generatet afefficient solutions. The
set of all efficient solutions € X is denoted byX g, the representation of ¢ in objec-
tive space is called the efficient frontier or pareto front] ¢he set of all non-dominated
pointsj = f(Z) € Y by Yg. Fig. 3 illustrates the difference between dominated and
non-dominated solutions in a bi-objective space.

There are different approaches, found in literature toesoiulti-objective optimiza-
tion problem.

— Weighted sum approach:In this approach, a multi-objective problem is trans-
formed into single objective problem by aggregating alldbgctives. This single
objective problem is then solved repeatedly with diffeneatameter values. This
is the most commonly used technique to fikigh. Xz can be partioned into sup-
ported efficient solutions and non-supported efficient thuhs, X5z and Xy g
respectivelyx € Xgp is an optimal solution of the following parametrized single
objective problem for somg = (A1, Mg, ..., Ap), Yk, Ay > Ot

P
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— e-constraint approach: The e-constraint method is another technique to solve
multi-objective optimization problems that consists ofimiizing one objective
with an upper bound constraints on the other objectives.

— Lexicographic approach:In this approach, the objectives are ranked in a priority
order and then optimized in that order without degradingahmeady optimized
objectives.

— Pareto approach: This approach is aimed at generating the complete set of effi-
cient solutions.

Classes of Schedules

Assumptions have to be made with regard to what the schethagrand may not do
when he generates a schedule. For example, it may be theheaseschedule may not
have any unforced idleness on any machine. Two classes efiglds are of utmost
importance in scheduling, namely active and semi-active.

A semi-active schedule is a left aligned schedule, it is aifda schedule that can
not be modified without changing the order of operationsheuit delaying some oper-
ations. In a semi-active schedule, it is not possible toHimisask earlier on a machine
without reordering tasks.

A feasible schedule is active if no task can be processeigeaithout delaying the
starting time of another task. This means that the scheduédtishift, such that there
is not enough space available between any two tasks in timaitlowhere some other
task can be inserted without violating any constraints. Tioinmize a regular measure
of performance it is only necessary to consider active sdesd

A schedule is called non-delay if no machine is kept idle e/hih operation is wait-
ing for processing. This implies that if there is one or maigks waiting for processing
in front of a machine, it must start processing one of the imgitasks as soon as it
becomes free.

Consider an example of a single machine problem with thrieg given in table 3.
Fig. 4 illustrates these classes of schedules for this pnobl

Scheduler; (fig. 4(a)) is not a semi-active schedule, because tasktt stiar= 10,
then what could start at = 9 without violating any constraint, and without changing
the execution order of jobs on the machine. Since this angds not semi-active, it is
neither active nor non-delay.

Scheduler, (fig. 4(b)) is a semi-active schedule as no task can be slioledrtls
its left without reordering the tasks. It is not an activeesblie. Infact, if task 3 is at
first position, the schedule can never be active as theralwiflys be a room for task 1
before task 3. As it is not active, so it is also not non-delay.

Table 3: An example problem to illustrate classes of schedul

RN

WN B>
AN oS



M,

| | | |
M,y 3 2 1
0 1 2 3 4 5 6 7 8 é 1‘0 11 12 13 14 15
(b) o2: Semi-active schedule
| | | |
M, 2 3 1
(5 :‘l 2 3 4 5 6 % 8 9 fO 11 12 13 1‘4 £5
(c) o5: Active schedule
| | | |
M, 1 2 3

(d) 04: Non-Delay schedule

Fig. 4. Schedules of the problem described in table 3

Scheduler; (fig. 4(c)) is an active schedule (and a semi-active as welfpbse no
task can be shifted towards its left without delaying otlasks. It is however, not a hon
delay schedule as job 1 could have been processed on mathiaelabut machine is
kept idle.

Scheduler, (fig. 4(d)) is a non-delay (as well as active and semi-actigahachine
is never kept idle when the task was available.

Classification of Scheduling Problems

There are some notations related to scheduling. This oat&idecomposed of three
field a, 8 and~. The scheduling problem is denoted by 3-field notatiol|~.

o field Thea field describes the machine environment. It consists;odindas where

a is the type of shop and, is the number of machines in the problem and is optional.
If this field is empty, then the number of machines is the datheproblem.

Some machine environment in thefield are:



Table 4: Some examples for the field

a1 Description

¢  Single machine, the value for the fieldis “1”
P Identical parallel machines

Q Parallel machines with different speeds

R  Unrelated parallel machines

F  Flow shop

J Jobshop

O Open shop

Table 5: Some examples for the figidd

B Description
d; The deadline
prmp  The preemption constraints
prec  The precedence constraints
7 the release date

— Single Machine: Only a single machine is available for pssagg. It is the simplest
case of all scheduling environment.

— ldentical Parallel Machines: There ateidentical machines in parallel. Jghre-
quires only one operation and may be processed on any one «f thachines.

— Parallel Machines with Different Speeds: There aranachines in parallel with
different speeds. This environment is referred to as umiforachines.

— Unrelated Parallel Machines: More generalized case ofgbakiere there are
different machines in parallel with speed of machines eelab the jobs being
processed on them.

— Flow Shop: There aren machines in series. Each job has to processed on each
machine with each job follow the same route.

— Job Shop: In ajob shop, each job has its own predeterminéel tmtollow. A route
may not go through all machines.

— Open Shop: Jobs has to be processed with no restrictionsegénd to the routing
of each job through the machine environment.

Some notations ok field are given in table 4.

3 field The s field describes the constraints and particularities of tiodlem.

— Deadline: There are those due dates which are imperatwds;adled deadlines. A
deadline is a due date for which tardiness is not allowediftk& Billaut, 2006).

— Preemption: Processing of a job on a machine may be inteduptd resumed at a
later time even on a different machine and already procemseadint is not lost.

— Precedence: One or more jobs have to be completed beforeeaujob is allowed
to start.

— Release Dates: The release date of jpis the time when a job is arrived at the
system to be processed and the job cannot start its progdssiore release date.

Some possible entries pffield and their notations are given in table 5.



Table 6a: Some examples for the field

5y Description
Chax Makespan
L.x Maximum lateness
Tmax Maximum tardiness
X; T; Total tardiness

T Mean tardiness

Table 6b: Some MO examples for the field

~ Description
8(f1, s fK) Enumeration of non-dominated solutions
Lex(f1,..., fx) Lexicographic optimisation o objectives
Fy(f1,..,fxk) Convex combination o objectives
e(f1,....fx)  e-constraint method ok™ objectives

~ field The+ field describes the objective function. For example, in glsimachine
problem with unequal release dates, problem can be denstéd; d f, with f =X}

T;, XU;, Tmax, €tC Some are given in table 6a. For multiobjective problenss,df
objectives separated by comma are usedfield. For instance, a single machine prob-
lem with Cy,.,. andT can be noted as$||C,.,T. Moreover, based on the method to
compute pareto optimum, different values for théeld can be introduced, as shown
in table 6b.

2 Literature Review

This section addresses, the relevant single machine pngtdéudied in literature. The
approach used in the literature for solving problems witifedént single and multi-
objective one machine scheduling problems are discussegliéw of the dominance
rules for single machine problems is also presented.

A large number of approaches have been used for solving sihaglsling problem
with varying degree of success. Constructive algorithrhas thich buildup a solution
from the data of the problem by following a simple set of rildsch exactly determines
the processing order. Priority dispatching rules (like $iRd@ EDD) fall in this category.
Due to their simplicity, ease of implementaion and minin@hputational complexity,
they are very often used in industrial problemes. A very féwhem provide optimal
solution for certain specific single machine problems. Satassical scheduling al-
gorithms for single machine include Lawler’s algorithm fdprec| fmax @and Moore’s
algorithm forl|d;| XU;. Enumeration methods list or enumerate a given set of pessib
schedules and then eliminate the non-optimal schedulestfie list. These techniques
include dynamic programming and branch and bound method.

Single machine with tardiness problem A dominance rule is a constraint that can
be added to the initial problem without changing the valutghefoptimum. (Emmons,
1969) introduced some powerful dominance rules, on whicktrmbthe exact methods



rely for solving1||X;T; problem. This problem is shown to be NP-hard by (Du & Le-
ung, 1990). (Chu & Portmann, 1992) defined a dominant sutbsehedules fot |r; | 2;

T; and proposed several approximate algorithms belonginkiscsstibset. (Akturk &
Yildirim, 1998) proposed a dominance rule that providesféigent conditions for lo-
cal optimality for thel||X; w;T; problem. Then they extended these dominance rules
for 1|r;|X; w; T; problem and incorporated them in a branch and bound algorith
(Akturk & Ozdemir, 2000) and two local search algorithms {étk & Ozdemir, 2001).
(Szwarc & Mukhopadhyay, 1996) developed a branch and bolgoditam for 1||.X; T
based on their new decomposition rule. Then they reporté8izwarcet al,, 1999) and
(Szwarcet al, 2001) some improved performance of their algorithm by @Bring
the impact of deleting lower bound and adding a stronger meosition rule. (Bap-
tisteet al, 2004) generalized these dominance rules and introducedomeer bounds
for branch and bound procedure for;|%; T; . (Su & Chen, 2008) has used domi-
nance properties to develop a branch and bound methad/foE; 7; . (Loukil et al,
2005) reviewed literature for a multi-objective single mime scheduling problem and
proposed a simulated annealing based method.

Multi-objective single machine problem Most of the multi-objective single machine
scheduling problems found in literature are infaatonstraint problems, where one

Table 7: A brief review of multi-objective single machineoptems

Problem Reference Complexity
O(n*) fork=2
L€ 1mn/ f2maes 5 JEma)  (HOOgEVEEN, 1992) O(nkU+D-6)  otherwise
~ (Smith, 1956) O(nlog(n))
1|d;|€(C'/ Limax) (Heck & Roberts, 1972)

(VanWassenhove & O(n?*plog(n))
Gelders, 1980)

(Nelsonet al, 1986)

(Essweiret al,, 2001)

1| F(Tmax, C) (Sen & Gupta, 1983)
1| Lex( fmax, C) (Emmons, 1975a)
1]€(C'/ finax)
(John, 1989) O(nlog(n))
(Hoogeveen & Van de
Velde, 1995)
1||Lex(U, C) (Emmons, 1975b)
1|le(C/U)
(Nelsonet al,, 1986) NP-hard
(Kiran & Unal, 2006) NP-hard
1g(C,T) (Lin, 1983) NP-hard

1U[e(C/T, Tinax) (Nelsonet al,, 1986) NP-hard




objective is minimized while upper bound constraints arpased on other objectives.
Table 7 lists a review of relevant multi-objective singleahie problems.

(Smith, 1956) studied a particular caselot; |e(C'/ Limax) problem where a condi-
tionof L,,., = 0isimposed. (Heck & Roberts, 1972) and (VanWassenhove &é&gld
1980) extended this problem by proposing a priori and apiostelgorithm respec-
tively. (Nelsonet al, 1986) proposed a branch and bound algorithm for the sanfe pro
lem by making use of dominance rules to identify a subset nfcdheminated schedules.
(Sen & Gupta, 1983) proposed a branch and bound proceduté (T },,.x, C)) prob-
lem.

(Emmons, 1975a) studied the generalized problgiez ( fiax, C) and proposed a
greedy algorithm. Later, (John, 1989) and (Hoogeveen & \éNealde, 1995) provided
some improved results fdi|e(C'/ fuax) problem.

(Hoogeveen, 1992) studied the problem of minimizing féncreasing functions
of the completion times with two cases &f = 2 and K > 2 and specified the cardi-
nality of the set of efficient solutions.

In the class of NP hard problems, (Emmons, 1975b) proposedreth and bound
algorithm for1|| Lex (U, C') problem and provided some dominance conditions inspired
by the Moore algorithm. (Nelsoet al, 1986) provided the enumeration of Pareto op-
tima for 1||¢(C'/U) employing a branch and bound algoritm. Later, (Kiran & Unal,
2006) extended the study on same problem and proposed soraeabeonditions for
these optimal||#(C,T) was studied by (Lin, 1983), who proposed a posteriori al-
gorithm based on dynamic programming and integerated iontesnew dominance
conditions for the problem.

(Nelsonet al,, 1986) was interested in||e(C /T, Tiax) problem, for which they
determined a subset of non-dominated schedules usinghgartcbound algorithm.

3 Branch and Bound Procedure

Branch and Bound methods have been the most successful eXdeapproaches for
solving scheduling problems. Branch and Bound (B & B) aldyonis are enumeration
schemes that use a dynamically constructed tree structusenzeans of representing
the solution space of all feasible sequences. As impliechbiy hame a branching as
well as a bounding scheme is applied to perform the searahijngt by considering
the topmost node of the search tree representing the roolepnqthe original problem
with the complete feasible region).

Branching The branching procedure describes how to split a probleortivit or more
subproblems (subsets of the problem) such that their ueiomrrs the main problem as
illustrated in fig. 5.

Each node at different levels of the search tree represepastial solution of the
problem. The algorithm is applied recursively to these soblems. From an unselected
(active) node the branching operation determines the rebafspossible nodes from
which the search could progress.



Root Problerﬂ

Sub Problem 1 ] Sub Problem ?

Fig. 5: Branching Procedure

Bounding Bounding procedure is aimed at computing the lower and uppands.
The upper bound gives the quality of the best solution foumthgd the search while
the lower bound represens the best possible quality to find, given node. These
bounds are an essential tool in a branch and bound proceshselfing combinatorial
optimization problem. The lower and upper bounds are usestiiace the search space.
The lower-bounding and upper-bounding procedures araéeapsitarting from the root
problem to every subproblem obtained through branchingge®. If the lower bound
for a node exceeds the best known feasible solution, no tyotyatimal solution can
exist in the subspace of the feasible region representethdiynbde. Therefore, the
node can be removed from further consideration. The seamteeds until all nodes
have been solved or pruned. If an optimal solution is foumafsubproblem, it is only
a feasible solution to the whole problem, but not necessarglobally optimal.

A Single Objective Branch and Bound Procedureln a single objective optimization
problem, the branching and bounding procedures can becapgdisily as stated above.
A relaxation of the original problem can be used to compugehibunds. For example,
a branch and bound procedure 1dr;|L,,,, can be constructed as follows.

In the branching process, at first check whether job is déditr a particular po-
sition or not. For this let jolz has to be considered as a candidate for postiamnly
if

re < mlin(max(t, 1) + pi)s

whereJ; € J, J being the set of jobs that are not yet scheduledtashehote the time
the machine completes its previous job. If any job that dagssatisfy this inequality
then it will be pruned from the tree (Pinedo & Chao, 1999).

There are various ways to compute bourglg, using a preemtive EDD (Earliest
Due Date) rule. The preemtive EDD rule gives optimal schedor 1|r;, prmp| Lmax.
So1|r;, prmp|Lmax is the relaxation ofl|r;|L,,q,. Calculate LB at each node. If LB
for a node exceeds the previously found UB, then this nodenatl branch further
(Pinedo & Chao, 1999).

Branch and Bound in Multi-Objective Scheduling Context In multi-objective branch-
and-bound procedures, one has to find the Pareto front df@wdu(in fact one solution
for each Pareto point in the objective space). Thereforeaah time of the search,
one keeps the set of non-dominated solutions found so feeddwf a single incum-
bent. Futhermore, unlike the single-objective case, tpessibly exist several Pareto
optimal solutions (more precisely, pareto optimal solsiavith distinct images in the



objective space) that can be reached from a given node iretirelstree. Hence, a nat-
ural extension of conventional branch-and-bounds carcageaach node with a set of
lower bounds.

Quality of bounds plays an important role in the success pftaianch and bound
method. Generally accepted and well known bounds in mydiative optimization are
the ideal point/” and nadir poing™, with 4/ < 3 < yV. Ideal Point represents a lower
bound and is defind as

yb = min yp,k=1,..n
yeEYN
Nadir pointy”, representing the upper bound on the value of any efficientt pis
defined as
yr = max yp, k=1,..n
yEYN

Unfortunately these bounds are generally far away from tredominated points.
The concept of bounds can be generalized to bound sets fon uselti-objective
optimization problems. For instance, local ideal pointd lxcal nadir points may repre-
sent a lower and uper bound set, where these local pointeawed from two adjacent
supported solutions in the objective space.
In the next section, we present the application of branchtemohd procedure on
our problem1|r; |8 {T}}.

4 1|r;|g {T;} Problem

1|r;|# {T;} problem is am-objective combinitorial optimization problem withtasks
to be executed on a single machine. Considering the taslinksach taskl; as a
performance measure for the scheduling problem withsks, makes the problem an
n-objective scheduling problem. Note tht;|# {C;} problem is a special case of
1|r;|# {T;} problem, obtained by settingj, d; = 0.

In 1)|#(f1, ..., i) problem, all non-dominated solutions are enumerated witho
using a special objective. This notation is always relatea posteriori resolution con-
text where the provided algorithm proceeds by enumeratingeasolutions in order to
retain the pareto optima (T’kindt & Billaut, 2006). This fdifs from the problem under
study, as the number of objectives here are dependent oruthber of tasks.e. n.
Therfore, a different notation ¢f{7}} is used, representing the individual tardiness of
each task as an objective.

As this is a multi-objective problem, there may not be a srggihedule superior to
all others. Thus the goal is to find the set of non-dominatéedales of the problem. A
branch and bound procedure is developed to find the set oflootinated solutions for
1|r;|# {T};}. Active schedule generation procedure is employed for thedhing phase.
Depth first strategy is used for generating the nodes of geefar this procedure.

Two different bounding schemes are applied. First bounditigeme is based on
solving1|r;, prmp|iT; instances at each node, where a node represents a pargidt sch
ule. The set of tardiness values for altasks, thus obtained, is used as a lower bound
set for the original problem. This node is discarded if it@s dominated by any of the
earlier lower bound set. This assumes that all the solutibtize subproblem of a node
corresponding to a dominated solution are dominated as well



Second bounding scheme is based upon local ideal points.

For an examplé|r; |4 {T;} problem as given in table 8, the procedure is illustrated
in table 9 and fig. 6. Table 9 lists all the solutions, partiatomplete, at every stage
of the procedure. At the root node (*,*,*,*%.g.there are two possible active branches.
The procedure explores both the branches as this node igdemamated with bound
of (0,5,4,0). Note that, node 20, 21, 22 and 23 are listed @ntable (for the sake of
clarity), although these nodes are not explored by the piureeas their root node (19)
is dominated. This can easily be seen in fig. 6 as well. Tatdasahd 10b list all the
non-delay and active but not non-delay schedules respégtfor the problem given in
table 8. There are 12 active schedules with 8 schedules adarmamated.

Table 8: Al|r;|#{T;} problemP

J 1 pj dj
1 0 4 8
2 1 2 12
3 3 6 11
4 5 5 10

Fig. 6: Multi-objective branch and bound tree of active stilies



Table 9: Branch and bound procedure

Node no. Node No. of branches Tardiness Dominated

1 (57 2 (0,5,4,0) N
2 (Lr** 3 (0,5,4,0) N
3 (1,24 2 (0,0,6,1) N
4 (1,2,3% 1 (0,0,1,7) D
5 (1,2,34) 0 (0,0,1,7) D
6 (1,2,4% 1 (0,0,6,1) N
7 (1,2,4,3) 0 (0,0,6,1) N
8  (1,3** 2 (0,5,0,5) N
9 (1,329 1 (0,0,0,7) N
10 (1,3,2,4) 0 (0,0,0,7) N
11 (1,3,4%) 1 (0,5,0,5) N
12 (1,3,4,2) 0 (0,5,0,5) N
13 (1,44 2 (0,6,5,0) N
14 (1,4,2,%) 1 (0,0,7,0) N
15 (1,4,2,3) 0 (0,0,7,0) N
16 (1,4,3%) 1 (0,6,5,0) N
17 (1,4,3,2) 0 (0,6,5,0) N
18 (2,%%* 3 (0,,7,20) N
19 (2,14 2 (0,0,7,2) D
20 (2,1,3% 1 (0,0,2,8) D
21 (2,1,3,4) 0 (0,0,2,8) D
22 (2,14 1 (0,0,7,2) D
23 (2,143) 0 (0,0,7,2) D
24 (2,3%* 2 (5,0,0,8) N
25 (2,3,1% 1 (5,0,0,8) N
26 (2,3,1,4) 0 (5,0,0,8) N
27 (2,34 1 (10,0,04) N
28 (2,3,4,1) 0 (10,0,04) N
29 (2,4,%* 2 (6,0,9,0) N
30 (24.1% 1 (6,0,9,0 D
31 (2,4,1,3) 0 (6,0,9,0) D
32 (24,34 1 (12,0500 N
33 (24,3,1) 0 (12,050) N




Table 10a: Non-delay schedules

No.

o T; Dominance Dom. Dom. by

1 1 1 1 1 1 1 1
1 2 3

1 '2 é 6 % é é 1‘0 1‘1 12 1‘3 1‘4 1‘5 1‘6 17 18 19 20 21 O 0 1 7 D 7 8 3
1 1 1 1 1 1 1 1 1 1 1
1 2 4 3

2 '2 % 6 % é é 1‘0 11 1‘2 1'3 1'4 1‘5 1'6 17 18 19 20 21 O O 6 1 N - -
1 1 1 1 1 1 1 1 1 1 1
1 3 2

3 '2 é é % é é 10 1‘1 12 1'3 1'4 1‘5 1'6 17 18 19 20 21 o o 0 7 N 1 7 9 -
I I I I I I I I I I I
1 3 2

4 '2 é é % '8 é 10 1‘1 1‘2 1‘3 1‘4 15 1‘6 17 18 19 20 21 o 5 0 5 N - -
1 1 1 1 1 1 1 1 1 1 1
1 2 3

5 '2 5 é % é é 10 1‘1 12 1‘3 1‘4 1‘5 1'6 1‘7 18 19 20 21 O 0 7 0 N 11 -
1 1 1 1 1 1 1 1 1 1 1
1 3 2

6 '2 5 é % é é 10 1‘1 1‘2 1'3 £4 1‘5 16 £7 18 19 20 21 o 6 50 N - -

Table 10b: Active schedules

No. o T;  Dominance Dom. Dom. by
I I I I I I I I
2 1 3

7 '2 é é 7 é é 1‘0 1‘1 1'2 13 1'4 1‘5 1'6 1‘7 18 19 20 21 O 0 2 8 D - l 3 7

’ ’ ) ’ ’

I I I I I I I I I I I I
2 1 4 3

8 '2 é é 7 '8 SVJ 1‘0 1‘1 12 1‘3 1‘4 1‘5 1‘6 1‘7 18 19 20 21 0 O 7 2 D 7 -
1 1 1 1 1 1 1 1 1 1 1 1
2 3 1

9 '2 é é % 'B 9 1‘0 1‘1 1'2 13 1'4 1‘5 1'6 1‘7 18 19 20 21 5 O O 8 N - 3
1 1 1 1 1 1 1 1 1 1 1 1
2 3 1

10 '2 é é % é 9 1‘0 1‘1 1‘2 £3 14 £5 1‘6 1‘7 18 19 20 21 10 O 04 N - -
I I I I I I I I I I I I I
2 1 3

11 '2 5 (‘3 % '8 é 10 1‘1 1‘2 1‘3 14 1‘5 1'6 1‘7 £8 1‘9 20 21 6 0 9 0 D - 5

’ ’ )

I I I I I I I I I I I I I
2 3 1

12 '2 5 é % '8 é 10 1‘1 £2 1‘3 1‘4 1‘5 16 1‘7 1‘8 1‘9 20 21 12 O 5 0 N - -




5 Conclusions & Perspectives

A single machinex-objective scheduling problem with individual tardine$gach task

as an objective, denoted &8, |t {7} is presented. A branch and bound procedure is
built for this problem. Branching procedure is based on theweration of active sched-
ules. The branch and bound tree is explored using depth fiegegy. Two bounding
schemes are used in the procedure. The main perspectives gty is to find a set

of dominance rules in order to reduce the search space. Setter Quality bounds
for this problem are to be explored further. Computatioredficient data structures for
suchn-objective problem may improve the performance of the pilace as well.

GLOSSARY OF NOTATION

J set of tasks.

M set of machines.

T A sequence.

o A schedule.

rj Ready time, Ready time gf" task.

p; Processing time oft" task

d; Due date ofj'" task.

d; The deadline of*" task.

Cj(o) Completion time ofj*" task in a schedule.
L;(o) Lateness of*" task in a schedule.

T;(o) Tardiness time of ‘" task in a schedule.

f A performance measure.

Cax (0) Makespan, or total completion time of a schedule
Tnax (0) Maximum tardiness of a schedute

Luax (0) Maximum lateness of a schedute

T(0) Mean tardiness of a schedute

CMT (o) Conditional mean tardiness of a schedule
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