
A Single Machine Scheduling Problem with Individual
Job Tardiness based Objectives,1|rj|] {Tj}

Aeysha SHAHZAD

LINA
Universit́e de Nantes

2, rue de la Houssinière
BP 92208, 44322 Nantes Cedex 3, France

aeysha.atif@etu.univ-nantes.fr

Abstract. We consider a single machine multi-objective scheduling problem
with each taskj having a release date,rj and a due date,dj . The goal is to
find a set of non-dominated solutions with individual tardiness of each task, Tj

as the objective, which is a task specific objective. The problem is denotedas
1|rj |] {Tj}. A branch and bound procedure is proposed.

1 Introduction

Scheduling concerns the allocation of limited resources (also known as machines) to
the given set of tasks over time. Different components of a scheduling problem are
the tasks, constraints, resources and the objective functions. Scheduling of tasks to re-
sources is to find a processing start time for each task. For a single machine, there is
only one resource available for the processing of tasks, there does not arise the question
of assigning a task to resource and hence the goal is to determine a schedule of tasks.

A single machine scheduling problem consists of a setJ of tasks, with each taskj ∈
J having release datesrj and due datedj , that arrives on a single machine to be executed
for a processing timepj and completion timeCj . It is desired to sequence the jobs on a
machine in a particular order to optimize certain objectives. This study focuses on the
1|rj |] {Tj} problem. This is ann-objective combinitorial optimization problem withn
tasks to be executed on a single machine.

In the case where all the characteristics of the problem (processing time of each op-
eration, release dates,etc.) are known, we speak of a deterministic problem. Conversely,
some of these characteristics may be random variables of known probability law. In this
case we speak of a stochastic problem. If all the data of the problem are known at the
same time we speak of a static problem. For some problems, a schedule may have been
calculated and being processed when new operations arrive in the system. Then the
foregoing schedule has to be re-established in real time. These problems are said to be
dynamic.

Scheduling Definitions

Definition 1. A taskj is a fundametal entity described in time domain by a start time
and finish time, that is executed for a processing time on a certain resource (Squirrel &
Lopez, 1999).

A task is associated with it a release date,rj , specifying the time of arrival of task
in the scheduling system, a processing time,pj , the time for which task executes on a
machine, a due date,dj , the date at which job is promised to be completed. Number
of tasks in the problem is denoted asn reflecting the problem size, while number of
tasks available for processing at any instantt, is denoted asnt. A resource is required
to perform tasks.

Definition 2. A resource,Mk ∈ M is any physical or virtual entity of limited capacity
and/or availibility, allocated to the tasks competing for it.

The term machine is generally used instead of resource in shop scheduling literature.
A resource can be classified as renewable and non-renewable.Renewable resources
become available again after use, while non-renewable resources disappear after use
(T’kindt & Billaut, 2006). Usually a limit on the capacity ofthe resources is the major
constraint besides others,i.e.a machine cannot perform several tasks at the same time.

A constraint represents a condition which definitely must berespected. Constraints
are not restricted to the limitations on resource, but to anydecision variable involved in
the problem. A constraint may be viewed as a resticted set of values that these decision
varibles can take. For example, the occurrence of differentrelease dates constitutes a
constraint which must be stated precisely. A solution of a scheduling problem must
always satisfy a certain number of constraints.

Definition 3. A processing sequence (π) represents a permutation of the tasks compet-
ing for a resource, or an order in which tasks are to be processed on a given resource.

A processing sequence therefore contains no explicit information about the times at
which the various operations start and finish. Timetabling is refered as the process of
deriving a processing schedule from a processing sequence (S.French, 1982).

Definition 4. A schedule (σ) usually refers to an allocation of jobs within a more com-
plicated setting of machines, allowing possibly for preemptions of tasks by other tasks
that are released at later points in time (Pinedo & Chao, 1999).

A feasible schedule is a schedule that satifies all the constraints of the subject
scheduling problem. These constraints, generally referedas hard constraints must be
staified or the schedule is infeasible. Similarly we speak ofsoft constraints, as the con-
straints that are desired to be satified, but do not cause the schedule to be out of feasible
space, if unsatified. These are refered as objectives of the problem.

Definition 5. An objective reflects the desired characteristics in the solution to find for
a scheduling problem by executing a given set of tasks on the machines in a certain
sequence.

Different performance measures may be used for the evaluation of schedules in
regards with the objectives under consideration. The objectives reflect the characterics
desired in the final schedule. These may be based upon completion times, due dates or
inventory, utilization costs,etc. Two performance measures are equivalent if a schedule
which is optimal with respect to one is also optimal with respect to the other and vice
versa.

The most studied objective related to completion times is minimizing the comple-
tion time of the entire schedule, known as makespan and denoted asCmax, defined
as:

Cmax = max
1≤j≤n

Cj

The objective can also a function of the due dates. The lateness of jobj is defined
asLj = Cj − dj , which is positive when jobj is completed late and negative when it is
completed early. The maximum lateness,Lmax, is defined as:

Lmax = max
1≤j≤n

Lj

One of the most important objectives to deal with in a manufacturing system is to min-
imize tardiness which can be measured through several performance measures. The
tardiness of a job is computed as,Tj = max(0, Lj).

The most used performance measure to evaluate the tardinessis the mean tardiness
(i.e. T̄=Σj Tj /n). The maximum tardiness,i.e.

Tmax = max
1≤j≤n

Tj ,

can be of great interest for the decision-maker in the shop which is an indication of a
worst case behavior during a particular experiment. The number of tardy jobs is defined
as,

Uj =

{

1 if Lj > 0
0 otherwise

The conditional mean tardiness described as

CMT =

∑

j Tj
∑

j Uj

measures the average amount of tardiness for the completed jobs which are found to be
tardy. The two large families of objectives are:

– minimax, which represent the maximum value of a set of functions to be minimised,
and

– minisum, which represent a sum of functions to be minimised.

Table 1: Some Performance Measures

Name Notation Regular Type
Makespan Cmax yes minimax

Maximum lateness Lmax yes minimax
Maximum tardiness Tmax yes minimax

Total tardiness Σj Tj yes minisum
Total weighted tardiness

∑

j wjTj yes minisum
Mean tardiness T̄ yes minisum

Conditional mean tardiness CMT no minisum

Table 2: An example problem to illustrate Regular measure

j rj pj dj
1 0 4 8
2 2 3 8
3 4 4 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3

(a)σ1: Cmax= 15,CMT= 2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3

(b) σ2: Cmax= 16,CMT= 3.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3

(c) σ3: Cmax= 17,CMT= 3.33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3

(d) σ4: Cmax= 18,CMT= 4.33

Fig. 1: Schedules for problem in table 2 illustrating performance measures

Performance measures can be classified into regular ones andthose that are not.

Definition 6. A regular measure of performance is one that is non-decreasing in the
completion timesC1, ..., Cn (S.French, 1982). ThusR is the functionC1, C2,, Cn

such that

C1 ≤ C ′
1, C2 ≤ C ′

2,, Cn ≤ C ′
n , together

⇒ R {C1, C2,, Cn} ≤ R {C ′
1, C

′
2,, C

′
n}.

Maximum completion time (Cmax) and mean tardiness (T̄) are examples of regular
measure whereasCMT is not a regular one. Table 1 lists a few performance measures.

σ1 σ2 σ3 σ4

2

4

6

8

10

12

14

16

18

Schedule

T
im

e Cmax

CMT

Fig. 2: Regular and Non Regular Measures

In Table 3, is given an example for illustrating the difference between regular and non-
regular performance measures.

Four different solutions are illustrated in fig. 2 and the values of performance mea-
sures are illustrated in fig. 2 for problem of table 3. If we compare, for example, the
σ2 andσ3 schedules, althoughCj(σ2) ≤ Cj(σ3), ∀j, the CMT obtained is less for this
schedule,i.e.

Cj(σ2) ≤ Cj(σ3), ∀j,; CMT (σ2) ≤ CMT (σ3)

Hence CMT is a non-regular measure.

Multi-objective Optimization

Generally, single objective scheduling problems make the major part of the literature
in machine scheduling domain. However, it is often desired to have multiple prefer-
ences for a solution to find. These preferences may lead to conflicting objectives. Thus
maximizing one objective may degrade the other objectives to an unacceptable level. It
is required to find a compromised solution satisfying these objectives simultaneously,
although may not be optimal with respect to a single objective.
Multi-objective (MO) optimization is the process of simultaneously optimizing two or
more objectives subject to certain constraints. A multi-objective optimization problem
is defined by (Ehrgott & Gandibleux, 2000) as

min f(x), x ∈ X, wheref(x) = [f1(x), f2(x), ..., fp(x)]
T

with eachf(x) ∈ Y , p being the number of objectives,X is the set of all possible
solutions andY is the objective space.

0 2 4 6 8 10 12

0

2

4

6

8

10

f1

f 2

Dominated
Non-dominated

Fig. 3: A bi-objective space with dominated and non-dominated solutions

We speak of dominance of solutions as the way to compare the solutions to a multi-
objective problem. Ifx1, x2 ∈ X and∀k, fk(x1) ≤ fk(x2), with at least one strict
inequality, we sayx1 dominatesx2 (x1 � x2) andf(x1) dominatesf(x2). A fea-
sible solutionx̂ ∈ X is efficient or pareto optimal if there is no otherx ∈ X such
that ∀k, fk(x) ≤ fk(x̂) with at least one strict inequality,i.e. there is no solution at
least as good asx. As x̂ is efficient thenf(x̂) is called non-dominated point (Ehrgott &
Gandibleux, 2000). It is generally required to generate a set of efficient solutions. The
set of all efficient solutionŝx ∈ X is denoted byXE , the representation ofXE in objec-
tive space is called the efficient frontier or pareto front, and the set of all non-dominated
points ŷ = f(x̂) ∈ Y by YE . Fig. 3 illustrates the difference between dominated and
non-dominated solutions in a bi-objective space.

There are different approaches, found in literature to solve multi-objective optimiza-
tion problem.

– Weighted sum approach:In this approach, a multi-objective problem is trans-
formed into single objective problem by aggregating all theobjectives. This single
objective problem is then solved repeatedly with differentparameter values. This
is the most commonly used technique to findXE . XE can be partioned into sup-
ported efficient solutions and non-supported efficient solutions, XSE andXNE

respectively.x ∈ XSE is an optimal solution of the following parametrized single
objective problem for someλ = (λ1, λ2, ..., λp), ∀k, λk > 0:

min
x∈X

p
∑

k=1

λkfk(x)

– ε-constraint approach: The ε-constraint method is another technique to solve
multi-objective optimization problems that consists of minimizing one objective
with an upper bound constraints on the other objectives.

– Lexicographic approach: In this approach, the objectives are ranked in a priority
order and then optimized in that order without degrading thealready optimized
objectives.

– Pareto approach:This approach is aimed at generating the complete set of effi-
cient solutions.

Classes of Schedules

Assumptions have to be made with regard to what the schedulermay and may not do
when he generates a schedule. For example, it may be the case that a schedule may not
have any unforced idleness on any machine. Two classes of schedules are of utmost
importance in scheduling, namely active and semi-active.

A semi-active schedule is a left aligned schedule, it is a feasible schedule that can
not be modified without changing the order of operations, without delaying some oper-
ations. In a semi-active schedule, it is not possible to finish a task earlier on a machine
without reordering tasks.

A feasible schedule is active if no task can be processed earlier without delaying the
starting time of another task. This means that the schedule is left-shift, such that there
is not enough space available between any two tasks in time domain where some other
task can be inserted without violating any constraints. To minimize a regular measure
of performance it is only necessary to consider active schedules.

A schedule is called non-delay if no machine is kept idle while an operation is wait-
ing for processing. This implies that if there is one or more tasks waiting for processing
in front of a machine, it must start processing one of the waiting tasks as soon as it
becomes free.

Consider an example of a single machine problem with three jobs given in table 3.
Fig. 4 illustrates these classes of schedules for this problem.

Scheduleσ1 (fig. 4(a)) is not a semi-active schedule, because task 1 starts att = 10,
then what could start att = 9 without violating any constraint, and without changing
the execution order of jobs on the machine. Since this ordering is not semi-active, it is
neither active nor non-delay.

Scheduleσ2 (fig. 4(b)) is a semi-active schedule as no task can be slided towards
its left without reordering the tasks. It is not an active schedule. Infact, if task 3 is at
first position, the schedule can never be active as there willalways be a room for task 1
before task 3. As it is not active, so it is also not non-delay.

Table 3: An example problem to illustrate classes of schedules

j pj rj
1 4 0
2 3 2
3 4 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1 2 3 1

(a)σ1: Non Semi-active schedule

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1 3 2 1

(b) σ2: Semi-active schedule

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1 2 3 1

(c) σ3: Active schedule

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M1 1 2 3

(d) σ4: Non-Delay schedule

Fig. 4: Schedules of the problem described in table 3

Scheduleσ3 (fig. 4(c)) is an active schedule (and a semi-active as well) because no
task can be shifted towards its left without delaying other tasks. It is however, not a non
delay schedule as job 1 could have been processed on machine at t = 0, but machine is
kept idle.

Scheduleσ4 (fig. 4(d)) is a non-delay (as well as active and semi-active)as machine
is never kept idle when the task was available.

Classification of Scheduling Problems

There are some notations related to scheduling. This notation is decomposed of three
field α, β andγ. The scheduling problem is denoted by 3-field notation:α|β|γ.

α field Theα field describes the machine environment. It consists ofα1 andα2 where
α1 is the type of shop andα2 is the number of machines in the problem and is optional.
If this field is empty, then the number of machines is the data of the problem.
Some machine environment in theα field are:

Table 4: Some examples for the fieldα1

α1 Description
φ Single machine, the value for the fieldα is “1”
P Identical parallel machines
Q Parallel machines with different speeds
R Unrelated parallel machines
F Flow shop
J Job shop
O Open shop

Table 5: Some examples for the fieldβ

β Description
d̃j The deadline

prmp The preemption constraints
prec The precedence constraints
rj the release date

– Single Machine: Only a single machine is available for processing. It is the simplest
case of all scheduling environment.

– Identical Parallel Machines: There arem identical machines in parallel. Jobj re-
quires only one operation and may be processed on any one of them machines.

– Parallel Machines with Different Speeds: There arem machines in parallel with
different speeds. This environment is referred to as uniform machines.

– Unrelated Parallel Machines: More generalized case of above, where there arem
different machines in parallel with speed of machines related to the jobs being
processed on them.

– Flow Shop: There arem machines in series. Each job has to processed on each
machine with each job follow the same route.

– Job Shop: In a job shop, each job has its own predetermined route to follow. A route
may not go through all machines.

– Open Shop: Jobs has to be processed with no restrictions withregard to the routing
of each job through the machine environment.

Some notations ofα field are given in table 4.

β field Theβ field describes the constraints and particularities of the problem.

– Deadline: There are those due dates which are imperatives, and called deadlines. A
deadline is a due date for which tardiness is not allowed (T’kindt & Billaut, 2006).

– Preemption: Processing of a job on a machine may be interrupted and resumed at a
later time even on a different machine and already processedamount is not lost.

– Precedence: One or more jobs have to be completed before another job is allowed
to start.

– Release Dates: The release date of jobj, is the time when a job is arrived at the
system to be processed and the job cannot start its processing before release date.

Some possible entries ofβ field and their notations are given in table 5.

Table 6a: Some examples for the fieldγ

γ Description
Cmax Makespan
Lmax Maximum lateness
Tmax Maximum tardiness
Σj Tj Total tardiness
T̄ Mean tardiness

Table 6b: Some MO examples for the fieldγ

γ Description
](f1, ..., fK) Enumeration of non-dominated solutions

Lex(f1, ..., fK) Lexicographic optimisation ofK objectives
Fl(f1, ..., fK) Convex combination ofK objectives
ε(f1, ..., fK) ε-constraint method ofK objectives

γ field Theγ field describes the objective function. For example, in a single machine
problem with unequal release dates, problem can be denoted as 1|rj |f , with f =Σj

Tj , ΣUj , Tmax, etc. Some are given in table 6a. For multiobjective problems, list of
objectives separated by comma are used inγ field. For instance, a single machine prob-
lem with Cmax and T̄ can be noted as1||Cmax,T̄ . Moreover, based on the method to
compute pareto optimum, different values for theγ field can be introduced, as shown
in table 6b.

2 Literature Review

This section addresses, the relevant single machine problems studied in literature. The
approach used in the literature for solving problems with different single and multi-
objective one machine scheduling problems are discussed. Areview of the dominance
rules for single machine problems is also presented.

A large number of approaches have been used for solving shop scheduling problem
with varying degree of success. Constructive algorithm is that which buildup a solution
from the data of the problem by following a simple set of ruleswhich exactly determines
the processing order. Priority dispatching rules (like SPTand EDD) fall in this category.
Due to their simplicity, ease of implementaion and minimal computational complexity,
they are very often used in industrial problemes. A very few of them provide optimal
solution for certain specific single machine problems. Someclassical scheduling al-
gorithms for single machine include Lawler’s algorithm for1|prec|fmax and Moore’s
algorithm for1|dj |ΣUj . Enumeration methods list or enumerate a given set of possible
schedules and then eliminate the non-optimal schedules from the list. These techniques
include dynamic programming and branch and bound method.

Single machine with tardiness problem A dominance rule is a constraint that can
be added to the initial problem without changing the value ofthe optimum. (Emmons,
1969) introduced some powerful dominance rules, on which most of the exact methods

rely for solving1||ΣjTj problem. This problem is shown to be NP-hard by (Du & Le-
ung, 1990). (Chu & Portmann, 1992) defined a dominant subset of schedules for1|rj |Σj

Tj and proposed several approximate algorithms belonging to this subset. (Akturk &
Yildirim, 1998) proposed a dominance rule that provides a sufficient conditions for lo-
cal optimality for the1||Σj wj Tj problem. Then they extended these dominance rules
for 1|rj |Σj wj Tj problem and incorporated them in a branch and bound algorithm
(Akturk & Ozdemir, 2000) and two local search algorithms (Akturk & Ozdemir, 2001).
(Szwarc & Mukhopadhyay, 1996) developed a branch and bound algorithm for1||ΣjTj

based on their new decomposition rule. Then they reported in(Szwarcet al., 1999) and
(Szwarcet al., 2001) some improved performance of their algorithm by considering
the impact of deleting lower bound and adding a stronger decomposition rule. (Bap-
tisteet al., 2004) generalized these dominance rules and introduced new lower bounds
for branch and bound procedure for1|rj |Σj Tj . (Su & Chen, 2008) has used domi-
nance properties to develop a branch and bound method for1|rj |Σj Tj . (Loukil et al.,
2005) reviewed literature for a multi-objective single machine scheduling problem and
proposed a simulated annealing based method.

Multi-objective single machine problem Most of the multi-objective single machine
scheduling problems found in literature are infactε-constraint problems, where one

Table 7: A brief review of multi-objective single machine problems

Problem Reference Complexity

1||ε(f1max
/f2max

, ..., fKmax
) (Hoogeveen, 1992)

O(n4) for k = 2
O(nk(k+1)−6) otherwise

1|dj |ε(C̄/Lmax)
(Smith, 1956) O(nlog(n))
(Heck & Roberts, 1972)
(VanWassenhove &
Gelders, 1980)

O(n2plog(n))

(Nelsonet al., 1986)
(Essweinet al., 2001)

1||Fl(Tmax, C̄) (Sen & Gupta, 1983)
1||Lex(fmax, C̄) (Emmons, 1975a)
1||ε(C̄/fmax)

(John, 1989) O(nlog(n))
(Hoogeveen & Van de
Velde, 1995)

1||Lex(Ū , C̄) (Emmons, 1975b)
1||ε(C̄/Ū)

(Nelsonet al., 1986) NP-hard
(Kiran & Unal, 2006) NP-hard

1||](C̄, T̄) (Lin, 1983) NP-hard
1||ε(C̄/T̄ , Tmax) (Nelsonet al., 1986) NP-hard

objective is minimized while upper bound constraints are imposed on other objectives.
Table 7 lists a review of relevant multi-objective single machine problems.

(Smith, 1956) studied a particular case of1|dj |ε(C̄/Lmax) problem where a condi-
tion ofLmax = 0 is imposed. (Heck & Roberts, 1972) and (VanWassenhove & Gelders,
1980) extended this problem by proposing a priori and aposteriori algorithm respec-
tively. (Nelsonet al., 1986) proposed a branch and bound algorithm for the same prob-
lem by making use of dominance rules to identify a subset of non-dominated schedules.
(Sen & Gupta, 1983) proposed a branch and bound procedure for1||Fl(Tmax, C̄) prob-
lem.

(Emmons, 1975a) studied the generalized problem1||Lex(fmax, C̄) and proposed a
greedy algorithm. Later, (John, 1989) and (Hoogeveen & Van de Velde, 1995) provided
some improved results for1||ε(C̄/fmax) problem.

(Hoogeveen, 1992) studied the problem of minimizing theK increasing functions
of the completion times with two cases ofK = 2 andK > 2 and specified the cardi-
nality of the set of efficient solutions.

In the class of NP hard problems, (Emmons, 1975b) proposed a branch and bound
algorithm for1||Lex(Ū , C̄) problem and provided some dominance conditions inspired
by the Moore algorithm. (Nelsonet al., 1986) provided the enumeration of Pareto op-
tima for 1||ε(C̄/Ū) employing a branch and bound algoritm. Later, (Kiran & Unal,
2006) extended the study on same problem and proposed some general conditions for
these optima.1||](C̄, T̄) was studied by (Lin, 1983), who proposed a posteriori al-
gorithm based on dynamic programming and integerated in it some new dominance
conditions for the problem.

(Nelsonet al., 1986) was interested in1||ε(C̄/T̄ , Tmax) problem, for which they
determined a subset of non-dominated schedules using branch and bound algorithm.

3 Branch and Bound Procedure

Branch and Bound methods have been the most successful of theexact approaches for
solving scheduling problems. Branch and Bound (B & B) algorithms are enumeration
schemes that use a dynamically constructed tree structure as a means of representing
the solution space of all feasible sequences. As implied by their name a branching as
well as a bounding scheme is applied to perform the search, starting by considering
the topmost node of the search tree representing the root problem (the original problem
with the complete feasible region).

Branching The branching procedure describes how to split a problem into two or more
subproblems (subsets of the problem) such that their union returns the main problem as
illustrated in fig. 5.

Each node at different levels of the search tree represents apartial solution of the
problem. The algorithm is applied recursively to these subproblems. From an unselected
(active) node the branching operation determines the next set of possible nodes from
which the search could progress.

Root Problem

Sub Problem 1 Sub Problem 2

Fig. 5: Branching Procedure

Bounding Bounding procedure is aimed at computing the lower and upperbounds.
The upper bound gives the quality of the best solution found during the search while
the lower bound represens the best possible quality to find, at a given node. These
bounds are an essential tool in a branch and bound procedure for solving combinatorial
optimization problem. The lower and upper bounds are used toreduce the search space.
The lower-bounding and upper-bounding procedures are applied, starting from the root
problem to every subproblem obtained through branching process. If the lower bound
for a node exceeds the best known feasible solution, no globally optimal solution can
exist in the subspace of the feasible region represented by that node. Therefore, the
node can be removed from further consideration. The search proceeds until all nodes
have been solved or pruned. If an optimal solution is found for a subproblem, it is only
a feasible solution to the whole problem, but not necessarily a globally optimal.

A Single Objective Branch and Bound ProcedureIn a single objective optimization
problem, the branching and bounding procedures can be applied easily as stated above.
A relaxation of the original problem can be used to compute the bounds. For example,
a branch and bound procedure for1|rj |Lmax can be constructed as follows.

In the branching process, at first check whether job is eligible for a particular po-
sition or not. For this let jobc has to be considered as a candidate for positionk only
if

rc < min
l
(max(t, rl) + pl),

whereJl ∈ J , J being the set of jobs that are not yet scheduled andt denote the time
the machine completes its previous job. If any job that does not satisfy this inequality
then it will be pruned from the tree (Pinedo & Chao, 1999).

There are various ways to compute bounds,e.g.using a preemtive EDD (Earliest
Due Date) rule. The preemtive EDD rule gives optimal schedule for 1|rj , prmp|Lmax.
So1|rj , prmp|Lmax is the relaxation of1|rj |Lmax. Calculate LB at each node. If LB
for a node exceeds the previously found UB, then this node will not branch further
(Pinedo & Chao, 1999).

Branch and Bound in Multi-Objective Scheduling Context In multi-objective branch-
and-bound procedures, one has to find the Pareto front of solutions (in fact one solution
for each Pareto point in the objective space). Therefore, ateach time of the search,
one keeps the set of non-dominated solutions found so far instead of a single incum-
bent. Futhermore, unlike the single-objective case, therepossibly exist several Pareto
optimal solutions (more precisely, pareto optimal solutions with distinct images in the

objective space) that can be reached from a given node in the search tree. Hence, a nat-
ural extension of conventional branch-and-bounds can associate each node with a set of
lower bounds.

Quality of bounds plays an important role in the success of any branch and bound
method. Generally accepted and well known bounds in multiobjective optimization are
the ideal pointyI and nadir pointyN , with yI < y < yN . Ideal Point represents a lower
bound and is defind as

yk
I = min

y∈YN

yk, k = 1, ...n

Nadir pointyN , representing the upper bound on the value of any efficient point, is
defined as

yk
N = max

y∈YN

yk, k = 1, ...n

Unfortunately these bounds are generally far away from the non-dominated points.
The concept of bounds can be generalized to bound sets for usein multi-objective

optimization problems. For instance, local ideal points and local nadir points may repre-
sent a lower and uper bound set, where these local points are derived from two adjacent
supported solutions in the objective space.

In the next section, we present the application of branch andbound procedure on
our problem,1|rj |] {Tj}.

4 1|rj|] {Tj} Problem

1|rj |] {Tj} problem is ann-objective combinitorial optimization problem withn tasks
to be executed on a single machine. Considering the tardiness of each taskTj as a
performance measure for the scheduling problem withn tasks, makes the problem an
n-objective scheduling problem. Note that1|rj |] {Cj} problem is a special case of
1|rj |] {Tj} problem, obtained by setting∀j, dj = 0.

In 1||](f1, ..., fK) problem, all non-dominated solutions are enumerated without
using a special objective. This notation is always related to a posteriori resolution con-
text where the provided algorithm proceeds by enumerating all the solutions in order to
retain the pareto optima (T’kindt & Billaut, 2006). This differs from the problem under
study, as the number of objectives here are dependent on the number of tasksi.e. n.
Therfore, a different notation of] {Tj} is used, representing the individual tardiness of
each task as an objective.

As this is a multi-objective problem, there may not be a single schedule superior to
all others. Thus the goal is to find the set of non-dominated schedules of the problem. A
branch and bound procedure is developed to find the set of non-dominated solutions for
1|rj |] {Tj}. Active schedule generation procedure is employed for the branching phase.
Depth first strategy is used for generating the nodes of the tree for this procedure.

Two different bounding schemes are applied. First boundingscheme is based on
solving1|rj , prmp|]Tj instances at each node, where a node represents a partial sched-
ule. The set of tardiness values for alln tasks, thus obtained, is used as a lower bound
set for the original problem. This node is discarded if it is not dominated by any of the
earlier lower bound set. This assumes that all the solutionsof the subproblem of a node
corresponding to a dominated solution are dominated as well.

Second bounding scheme is based upon local ideal points.
For an example1|rj |] {Tj} problem as given in table 8, the procedure is illustrated

in table 9 and fig. 6. Table 9 lists all the solutions, partial or complete, at every stage
of the procedure. At the root node (*,*,*,*),e.g.there are two possible active branches.
The procedure explores both the branches as this node is non-dominated with bound
of (0,5,4,0). Note that, node 20, 21, 22 and 23 are listed in the table (for the sake of
clarity), although these nodes are not explored by the procedure as their root node (19)
is dominated. This can easily be seen in fig. 6 as well. Tables 10a and 10b list all the
non-delay and active but not non-delay schedules respectively, for the problem given in
table 8. There are 12 active schedules with 8 schedules as non-dominated.

Table 8: A1|rj |] {Tj} problemP

j rj pj dj
1 0 4 8
2 1 2 12
3 3 6 11
4 5 5 10

,,*,*

1,*,*,*

1,2,*,*

1,2,3,*

1,2,3,4

1,2,4,3

1,2,4,3

1,3,*,*

1,3,2,*

1,3,2,4

1,3,4,*

1,3,4,2

1,4,*,*

1,4,2,*

1,4,2,3

1,4,3,*

1,4,3,2

2,*,*,*

2,1,*,*

2,1,3,*

2,1,3,4

2,1,4,*

2,1,4,3

2,3,*,*

2,3,1,*

2,3,1,4

2,3,4,*

2,3,4,1

2,4,*,*

2,4,1,*

2,4,1,3

2,4,3,*

2,4,3,1

Fig. 6: Multi-objective branch and bound tree of active schedules

Table 9: Branch and bound procedure

Node no. Node No. of branches Tardiness Dominated
1 (*,*,*,*) 2 (0,5,4,0) N
2 (1,*,*,*) 3 (0,5,4,0) N
3 (1,2,*,*) 2 (0,0,6,1) N
4 (1,2,3,*) 1 (0,0,1,7) D
5 (1,2,3,4) 0 (0,0,1,7) D
6 (1,2,4,*) 1 (0,0,6,1) N
7 (1,2,4,3) 0 (0,0,6,1) N
8 (1,3,*,*) 2 (0,5,0,5) N
9 (1,3,2,*) 1 (0,0,0,7) N
10 (1,3,2,4) 0 (0,0,0,7) N
11 (1,3,4,*) 1 (0,5,0,5) N
12 (1,3,4,2) 0 (0,5,0,5) N
13 (1,4,*,*) 2 (0,6,5,0) N
14 (1,4,2,*) 1 (0,0,7,0) N
15 (1,4,2,3) 0 (0,0,7,0) N
16 (1,4,3,*) 1 (0,6,5,0) N
17 (1,4,3,2) 0 (0,6,5,0) N
18 (2,*,*,*) 3 (0,,7,20) N
19 (2,1,*,*) 2 (0,0,7,2) D
20 (2,1,3,*) 1 (0,0,2,8) D
21 (2,1,3,4) 0 (0,0,2,8) D
22 (2,1,4,*) 1 (0,0,7,2) D
23 (2,1,4,3) 0 (0,0,7,2) D
24 (2,3,*,*) 2 (5,0,0,8) N
25 (2,3,1,*) 1 (5,0,0,8) N
26 (2,3,1,4) 0 (5,0,0,8) N
27 (2,3,4,*) 1 (10,0,0,4) N
28 (2,3,4,1) 0 (10,0,0,4) N
29 (2,4,*,*) 2 (6,0,9,0) N
30 (2,4,1,*) 1 (6,0,9,0 D
31 (2,4,1,3) 0 (6,0,9,0) D
32 (2,4,3,*) 1 (12,0,5,0) N
33 (2,4,3,1) 0 (12,0,5,0) N

Table 10a: Non-delay schedules

No. σ Tj Dominance Dom. Dom. by

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3 4

0,0,1,7 D 7,8 3

2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 34

0,0,6,1 N - -

3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 23 4

0,0,0,7 N 1,7,9 -

4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 23 4

0,5,0,5 N - -

5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 34

0,0,7,0 N 11 -

6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 234

0,6,5,0 N - -

Table 10b: Active schedules

No. σ Tj Dominance Dom. Dom. by

7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

12 3 4

0,0,2,8 D - 1,3,7

8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

12 34

0,0,7,2 D 7 -

9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

12 3 4

5,0,0,8 N - 3

10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

12 3 4

10,0,0,4 N - -

11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

12 34

6,0,9,0 D - 5

12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

12 34

12,0,5,0 N - -

5 Conclusions & Perspectives

A single machinen-objective scheduling problem with individual tardiness of each task
as an objective, denoted as1|rj |] {Tj} is presented. A branch and bound procedure is
built for this problem. Branching procedure is based on the enumeration of active sched-
ules. The branch and bound tree is explored using depth first strategy. Two bounding
schemes are used in the procedure. The main perspective of this study is to find a set
of dominance rules in order to reduce the search space. Some better quality bounds
for this problem are to be explored further. Computationalyefficient data structures for
suchn-objective problem may improve the performance of the procedure as well.

GLOSSARY OF NOTATION

J set of tasks.
M set of machines.
π A sequence.
σ A schedule.
rj Ready time, Ready time ofjth task.
pj Processing time ofjth task
dj Due date ofjth task.
d̃j The deadline ofjth task.
Cj(σ) Completion time ofjth task in a scheduleσ.
Lj(σ) Lateness ofjth task in a scheduleσ.
Tj(σ) Tardiness time ofjth task in a scheduleσ.
f A performance measure.
Cmax (σ) Makespan, or total completion time of a scheduleσ.
Tmax (σ) Maximum tardiness of a scheduleσ.
Lmax (σ) Maximum lateness of a scheduleσ.
T̄ (σ) Mean tardiness of a scheduleσ.
CMT (σ) Conditional mean tardiness of a scheduleσ.

Bibliography

Akturk, M. S. & Ozdemir, D., 2000, “An exact approach to minimizing total
weighted tardiness with release dates,”IIE Transactions32, no. 11, pp. 1091–1101,
10.1023/A:1013741325877.

Akturk, M. S. & Ozdemir, D., 2001, “A new dominance rule to minimize total weighted
tardiness with unequal release dates,”European Journal of Operational Research
135, no. 2, pp. 394–412, doi: DOI: 10.1016/S0377-2217(00)00319-2.

Akturk, M. S. & Yildirim, M. B., 1998, “A new lower bounding scheme for the total
weighted tardiness problem,”Comput. Oper. Res.25, no. 4, pp. 265–278, 290642.

Baptiste, P., Carlier, J., & Jouglet, A., 2004, “A Branch-and-Bound procedure to min-
imize total tardiness on one machine with arbitrary releasedates,”European Jour-
nal of Operational Research158, no. 3, pp. 595–608, doi: DOI: 10.1016/S0377-
2217(03)00378-3.

Chu, C. & Portmann, M. C., 1992, “Some new efficient methods tosolve the
n/1/ri/[epsilon]Ti scheduling problem,”European Journal of Operational Research
58, no. 3, pp. 404–413, doi: DOI: 10.1016/0377-2217(92)90071-G.

Du, J. & Leung, J. Y.-T., 1990, “Minimizing Total Tardiness on One Machine is NP-
Hard,” Mathematics of operations research15, no. 3, pp. 483–495.

Ehrgott, M. & Gandibleux, X., 2000, “A survey and annotated bibliography of mul-
tiobjective combinatorial optimization,”OR Spectrum22, no. 4, pp. 425–460,
10.1007/s002910000046.

Emmons, H., 1969, “One-Machine Sequencing to Minimize Certain Functions of Job
Tardiness,”OPERATIONS RESEARCH17, no. 4, pp. 701–715.

Emmons, H., 1975a, “A note on a scheduling problem with dual criteria,” Naval Re-
search Logistics Quarterly22, no. 3, pp. 615–616.

Emmons, H., 1975b, “One machine sequencing to minimize meanflow time with min-
imum number tardy,”Naval Research Logistics Quarterly22, no. 3, pp. 585–592.

Esswein, C., T’kindt, V., & Billaut, J., 2001, “A polynomialtime algorithm for solving
a single machine bicriteria scheduling problem,” Tech. rep., Laboratory of Computer
Science, University of Tours (France).

Heck, H. & Roberts, S., 1972, “A note on the extension of a result on scheduling with
secondary criteria,”Naval Research Logistics Quarterly,19, pp. 59–66.

Hoogeveen, J. & Van de Velde, S., 1995, “Minimizing total completion time and maxi-
mum cost simultaneously is solvable in polynomial time,”Operations Research Let-
ters17, no. 5, pp. 205–208.

Hoogeveen, J. A., 1992,Single-Machine Bicriteria Scheduling, Ph.D. Thesis, CWI,
Amsterdam, The Netherlands.

John, T., 1989, “Tradeoff solutions in single machine production scheduling for mini-
mizing flow time and maximum penalty,”Computers & Operations Research16, no.
5, pp. 471–479.

Kiran, A. & Unal, A., 2006, “A single-machine problem with multiple criteria,” Naval
Research Logistics38, no. 5, pp. 721–727.

Lin, K., 1983, “Hybrid algorithm for sequencing with bicriteria,” Journal of Optimiza-
tion Theory and Applications39, no. 1, pp. 105–124.

Loukil, T., Teghem, J., & Tuyttens, D., 2005, “Solving multi-objective production
scheduling problems using metaheuristics,”European Journal of Operational Re-
search161, no. 1, pp. 42–61, doi: DOI: 10.1016/j.ejor.2003.08.029.

Nelson, R., Sarin, R., & Daniels, R., 1986, “Scheduling withmultiple performance
measures: the one-machine case,”Management Science32, no. 4, pp. 464–479.

Pinedo, M. & Chao, X., 1999,Operations Scheduling with Applications in Manufactur-
ing and Services.

Sen, T. & Gupta, S., 1983, “A branch-and-bound procedure to solve a bicriterion
scheduling problem,”IIE Transactions15, no. 1, pp. 84–88.

S.French, 1982,Sequencing and Scheduling: An Introduction to the Mathematics of the
Job Shop, Ellis Horwood Ltd.

Smith, W. E., 1956, “Various optimizers for single-stage production,”Naval Research
Logistics Quarterly3, no. 1, pp. 59–66.

Squirrel, P. & Lopez, P., 1999,L’advancement, Economic, Paris, ISBN 2-7178-3798-1.

Su, L.-H. & Chen, C.-J., 2008, “Minimizing total tardiness on a single machine with
unequal release dates,”European Journal of Operational Research186, no. 2, pp.
496–503, doi: DOI: 10.1016/j.ejor.2006.07.051.

Szwarc, W., Croce, F. D., & Grosso, A., 1999, “Solution of thesingle machine total
tardiness problem,”Journal of Scheduling2, no. 2, pp. 55–71, 10.1002/(SICI)1099-
1425(199903/04)2:2¡55::AID-JOS14¿3.0.CO;2-5.

Szwarc, W., Grosso, A., & Croce, F. D., 2001, “Algorithmic paradoxes of the single-
machine total tardiness problem,”Journal of Scheduling4, no. 2, pp. 93–104,
10.1002/jos.69.

Szwarc, W. & Mukhopadhyay, S. K., 1996, “Decomposition of the single machine total
tardiness problem,”Operations Research Letters19, no. 5, pp. 243–250, doi: DOI:
10.1016/S0167-6377(96)00031-4.

T’kindt, V. & Billaut, J., 2006,Multicriteria scheduling: theory, models and algorithms,
Springer Verlag.

VanWassenhove, L. & Gelders, L. F., 1980, “Solving a bicriterion scheduling problem,”
European Journal of Operational Research4, pp. 42–48.

