
Metaheuristics for the consistent nurse
scheduling and routing problem.

Thomas Macdonald
supervisors: Karl Dörner and Xavier Gandibleux

Department of Production and Logistics
University of Vienna
Bruenner Strasse 72

1210 Vienna – Austria
thomas.macdonald@etu.univ-nantes.fr

Abstract. We present a metaheuristic based on local search for the

scheduling and routing of mobile nurses. Mobile nurses visit patients at

home on a regular basis. Some patients require up to 3 visits per day on

predefined time windows. The visits require different qualifications and

the nurses have different qualification levels. Downgrading is possible.

In this problem besides the cost the service quality is also of major

importance. One aspect of service quality is to minimize the number

of different nurses that visit one customer. This leads to the consistent

routing and scheduling of mobile nurses.

We apply the developed algorithm to standard benchmark instances

based on the consistent VRP instances introduced by Groër et al [11].

Keywords: Mobile Healthcare, ConVRP, Metaheuristics

1 Introduction

Although the traditional vehicle routing problem, or VRP, has been extensively

studied by various researchers over the last 50 years, the focus has mostly been

on the routing side of the problem, ie how to minimise the total cost or distance

traveled by a fleet of vehicles over a set of routes. In this instance the focus is not

so much on this side of the problem, but rather on what Groër et al [11] term

the consistency constraint. This is when one constrains the problem in such a

way as to try and minimize the number of different vehicles that visit a given

client. This is a problem that has only really been studied for the last five years

or so.

In this paper, we examine a problem coming from a large Austrian charitable

organisation, which employs teams of nurses to visit outpatients at their homes.

This is, on the face of it a classical VRP. However, there are several added

constraints. First of all the requests from the clients involve time windows. Also

there is no demand, and no capacity, but there is a service time constraint. Each

task requested by the patient and serviced by a mobile nurse is expected to take

a certain amount of time. Also there is a scheduling aspect to the problem, as

the demands span a certain amount of days.

Although there is a routing aspect to the problem, the organisation is trying

to afford to their patients the best possible service quality. As the patients need

medical attention, this objective is very well served by allowing nurses and pa-

tients to build a friendly relationship, and so we try to ensure that each patient

only ever sees one nurse, insofar as this is possible. This is obviously the exact

same thing as was dicussed by Groër et al, ie the consistency issue. Therefore,

over the course of this research, we have made it a priority to construct solutions

that are good from a consistency point of view.

1.1 General Description

The overall objective (see 1 on page 5) is to service a set of clients with a set

of nurses who start from home . The main problem is that each client should

be visited always by the same nurse. Each client puts in service requests, each

of which has a time window and a day associated to it. A shift for a nurse is

at most 8 hours long, which defines the maximum route length. Also each nurse

has a skill level, from carer to doctor. Each request has a skill level demand, and

upgrading (ie a request for a procedure necessitating a skill level x being serviced

by someone with training of level y where y < x) is not possible, although

downgrading is.

For each client there can be up to 20 service requests per week. Each service

request includes a time window, of which there are 5 possible: Early Morning

(6am to 8am), Late Morning (8am to 11am), Midday (11am to 1pm), Afternoon

(1pm to 4pm), Evening (4pm to 8pm). If a nurse arrives too early at a client’s

home, they must wait, because the time windows are hard constraints. A week

starts on Monday and finishes on Sunday. Each service request involves a specific

day of the week. There is also an exact time, which indicates a preference, and

is therefore not a hard constraint. Also there is the length of time the task in

question will take.

When it comes to skill levels, each nurse has a certain level of qualification.

They can be trained to clean, to visit, as a home helper, a carer, or as a doctor.

Each service request specifies which level of skill is needed. Upgrading is not

possible, so a doctor can service a home help request, but a home helper cannot

service a care request.

Each nurse has a maximum number of hours that they can work in the week,

in addition to a maximum shift time per day. This factor limits the size the

routes can take.

1.2 Problem description

We start with several sets:

– V is a set of service requests.

– V ′ is the set of all nodes (service request locations and depots).

– For each client c, we have Vc, the set of service requests c has put in.

– C is the set of clients, K is the set of employees (nurses).

– H is the set of days. Monday to Friday would for example be 0 to 4.

Next, there are 3 binary variables, xkh
ij , y

k
i , and fk

c :

– If arc (i, j) is traversed by nurse k on day h, then xkh
ij = 0, 1 otherwise.

– If service request i is assigned to nurse k, then yki = 0, 1 otherwise.

– If client c is visited by nurse k, then fk
c = 0, 1 otherwise.

There are also some real variables.

– F ≥ 0 is the maximum number of nurses assigned to a client.

– Bi ≥ 0 is the beginning of service of request i.

– Bo(k,h) ≥ 0 is the time of departure from the start depot of nurse k on day

h.

– Bd(k,h) ≥ 0 is the time of arrival at the end depot of nurse k on day h.

The data is modeled as follows:

– ei is the start of the time window of service request i.

– li is the end of the time window of service request i.

– si is the service time of request i.

– T(k,h) is the maximum route duration of nurse k on day h.

– li is the skill level required by service request i.

– qk the skill level provided by nurse k.

– tij is the distance, or travel time from i to j.

– cij is the cost of the travel.

This leads us to the following formulation:

Formulation

minωF +
∑
i∈V ′

∑
j∈V ′

∑
k∈K

∑
h∈H

xkh
ij cij (1)

∑
h∈H

∑
k∈K

∑
j∈V ′

xkh
ij = 1 ∀i ∈ V, (2)

∑
j∈V ′

xkh
ij −

∑
j∈V ′

xkh
ji = 0 ∀i ∈ V, h ∈ H, k ∈ K, (3)

∑
j∈V ′

xo(k,h),j =1 ∀h ∈ H, k ∈ K, (4)

∑
i∈V ′

xi,d(k,h) =1 ∀h ∈ H, k ∈ K, (5)

Bj ≥ (Bi + si + tij)x
kh
ij ∀i ∈ V ′, j ∈ V ′, k ∈ K,h ∈ H, (6)

ei ≤ Bi ≤ li ∀i ∈ V, (7)

Bd(k,h) −Bo(k,h) ≤ T(k,h) ∀h ∈ H, k ∈ K, (8)

yki ≥
∑
h∈H

∑
j∈V ′

xkh
ij ∀i ∈ V, k ∈ K, (9)

yki li ≤ qk ∀i ∈ V, k ∈ K, (10)

|Vc|fk
c ≥

∑
i∈Vc

yki ∀c ∈ C, k ∈ K (11)

F ≥
∑
k∈K

fk
c ∀c ∈ C, (12)

xkh
ij ∈ {0, 1} ∀i ∈ V ′, j ∈ V ′, k ∈ K,h ∈ H, (13)

yki ∈ {0, 1} ∀i ∈ V, k ∈ K, (14)

fk
c ∈ {0, 1} ∀c ∈ C, k ∈ K, (15)

F ≥ 0, (16)

Bi ≥ 0 ∀i ∈ V ′. (17)

Constraints

Objective function (1 on the previous page): The weighting parameter ω has to

be set such that more weight is put on consistency than on routing.

Constraint (2 on the preceding page): every service request has to be visited.

Constraint (3): every service request has to be entered and left.

Constraint (4): every nurse has to leave her start depot on every day.

Constraint (5): every nurse has to return to her start depot on every day.

Constraint (6): sets the beginning of service at each location.

Constraint (7): time windows.

Constraint (8): maximum route duration constraints.

(Each nurse has an 8h shift per day)

Constraint (9): request to nurse assignment.

Constraint (10): skill level requirements.

Constraint (11): if nurse i visits client c

Constraint (12): the maximum number of nurses assigned to some client.

2 State of the art

Although the VRP has been studied extensively over the last 50 years, the fo-

cus has always been on the routing aspect of the problem. The type of problem

that is dealt with in this paper involves what Groër et al [11] term “consistency

requirements”. This is where the focus is on a patient as far as possible only

being visited by the same nurse. As far as we know this is the only paper that

deals specifically with this type of problem. We have used the same terminology

throughout this paper. In this section, we shall examine first which papers have

dealt with the VRP (in an incomplete manner, as this problem has been exten-

sively researched), and then examine what research has been done on various

types of mobile health care problems.

2.1 VRP

The Vehicle Routing Problem calls for the determination of an optimal set of

routes to be performed by a fleet of vehicles to serve a given set of customers. It

is one of the most important combinatorial optimisation problems.

The first paper to deal with the VRP specifically was written by Dantzig and

Ramser in 1959 [5]. In their paper, the authors described a real-world application

and proposed the first mathematical model and algorithmic solution to the prob-

lem. In 1964, Clarke and Wright [4] proposed a greedy heuristic that improved

on the approach put forward by Dantzig and Ramser. In the following years,

many papers have been written describing mathematical models, and both ex-

act and heuristic algorithms for solving either optimally or approximately many

variants of the VRP. We shall however refrain from examining all the research

that has beeen done on the VRP, but rather focus on those papers that deal

with heuristic or meta-heuristic solution methods, given that this paper itself

deals with a meta-heuristic solution method. The papers that deal with these

methods can be divided into “classical heuristics” mostly described before about

1995, and metaheuristic algorithms afterwards.

Classical Heuristics

As stated above, the first heuristic proposed for the VRP was the savings algo-

rithm described in 1964 by Clarke and Wright [4]. This algorithm starts with

as many routes as there are customers, and for each pair of routes, computes

the time (or distance) that would be saved by merging them. Then the routes

are merged together starting with the greatest saving, while respecting the con-

straints.

In 1974, Gillett and Miller [9] introduced the sweep algorithm. This algorithm

relies on the spatial layout of the customers. Using the depot as the origin it sorts

the customers by their polar coordinates, and adds them in increasing order to a

route, changing routes when the vehicle’s capacity is exceeded. This heuristic is

very fast, and usually yields good results, and has therefore been used extensively

in the literature.

A natural extension to the sweep algorithm is the petal method, where one

generate several routes, called petals, and making a selection by solving the set

partitioning problem. This method was first proposed by Balinski and Quandt

in 1964 [1].

Another algorithm introduced by Fisher and Jaikumar [8] only a few years

later, in 1981 is the cluster first, route second algorithm, where routes are con-

structed by grouping customers in clusters of which the total demand does not

exceed the capacity of the vehicle and solving one TSP per cluster. Because

each cluster is quite small, the TSP solution is easy to find, and therefore the

algorithm is fast.

Several inter-route improvement methods have been proposed over the years.

In 1965, Lin [14] proposed the λ-opt mechanism where λ edges are removed

from a tour and the λ remaining segments are reconnected in all possible ways.

A profitable reconnection (the first or the best) is identified and implemented.

When there are no more profitable reconnections, a local optimum is reached

and the procedure stops. Several modifications of this approach have been pub-

lished, most notably Lin and Kernighan in 1973 [15] who modify λ dynamically

throughout the search. Thompson and Psaraftis in 1993 [20], Van Breedam in

1994 [21] and Kinderwater and Savelsbergh [12] in 1997 proposed multi-route

edge exchange schemes for the VRP which were significantly reused afterwards.

In 1996 Xu and Kelly [23] amongst others, introduced Ejection Chains.

Metaheuristics

These types of solution strategies are by far the most promising, on the whole.

Overall results are better than classical heuristic methods. There are three differ-

ent types of metaheuristics which apply to the VRP: local search based methods,

population search methods, and learning mechanisms. We shall restrict our sur-

vey to local search based methods, for that is what our solution strategy is based

on.

Local Search There are several local search based methods. In 1989, Glover

[10] introduced Tabu Search, which is a form of local search where, to avoid

cycling, and therefore local minima, once a move has been made within the

neighbourhood, the correspond inverse move is forbidden, at least for a time.

This is because this method is based upon the idea that within a local search

neighbourhood, if a given move yields a good solution, then the inverse move

is likely to yield a bad one. Therefore the algorithm, upon reaching a better

solution than the previous one, stores in memory the move that allowed it to

reach the better solution, and forbids itself for a specified number of moves from

performing the opposite move. In 1989, Willard [22] was one of the first to apply

this method to the VRP. This method was improved several times, and remains

one of the most applied metaheuristics to the VRP.

A metaheuristic that is derived from the Tabu Search is the Taburoute,

described by Gendreau, Hertz and Laporte in 1994. In this method, vertices are

removed from a route and put into another one (all the possible move of this

type constitute the neighbourhood). It is then “forbidden” from returning to

that route for θ iterations, where θ is contained in [5, 10]. Taburoute also uses

a diversification strategy, penalizing vertices that have been frequently move in

order to increase the probability of considering slow moving vertices.

Another local search based metaheuristic is Simulated Annealing, which mod-

els the way liquids freeze in the process of annealing, going from a chaotic high-

energy state to a more ordered solid state. The process starts at a temperature

T . Variations in energy are observed, ie the local search moves from one solution

to another. If the new energy is higher (the solution is worse), it is accepted

with probability e−
dE
T . This allows the system to escape local minima. After a

number of iterations, enough to give good sampling statistics, the temperature

is decremented and the process starts anew.

The Adaptive Large Neighbourhood Search, or ALNS, is another metaheuris-

tic that is based on local search. However it can be instegrated with the other

methods descirbed above. The principle is the following: there exist many heuris-

tics which do a good job of inserting requests into a VRP solution. However

they are all bound by their susceptibility to local minima. The ALNS uses these

heuristics as the neighbourhood itself, alternately removing and reinserting re-

quests into the solution using destroy and repair heuristics. As the method pro-

ceeds, the heuristics are weighted according to how well they perform, and at

each iteration a destroy/repair pair is chosen according to this adaptive roulette

wheel.

Most notably, Pisinger and Ropke [16] used an Adaptive LNS to solve five

different variants of the vehicle routing problem: the vehicle routing problem

with time windows (VRPTW), the capacitated vehicle routing problem (CVRP),

the multi-depot vehicle routing problem (MDVRP), the site-dependent vehicle

routing problem (SDVRP) and the open vehicle routing problem (OVRP), all of

which present many similarities with our problem. They also recommended [17]

the LNS specifically for Vehicle Routing Problems (VRP).

2.2 Mobile Nurses

The problem of mobile nurses has been studied significantly. We were able to

uncover several papers dealing with this type of problem. Begur et al [2] described

a system for scheduling and routing of home health care nurses which integrated

GIS software with scheduling heuristics and databases, which through better

scheduling, improves routing, and the balance of work among nurses. Bertels

and Fahle [3] described in 2005 a system (Parpap) which through a combination

of linear programming, constraint programming, and meta-heuristics was able

to efficiently find solutions to home health care problems. Eveborn et al [7] were

also able to significantly improve the level of care given to the elderly in Sweden

using the Laps Care system they developed [6], which uses a repeated matching

heuristic.

The research that comes closest to our problem, albeit with no treatment of

time windows, is the 2009 paper by Groër et al [11]. In this paper, they consider

a problem from the small package shipping industry, which is a variant of the

classical capacitated VRP, which they call the Consistent VRP, or ConVRP,

because of the constraint that the same drivers must visit the same customers

on each day that the customers need service. The algorithm they use to solve

the problem is based on the Record-to-Record algorithm introduced by Li et al

[13] in 2005 to solve large-scale VRPs.

3 Contribution

To find results for the ConVRP, we use an LNS-based heuristic. First we con-

struct, by means of a heuristic, an initial solution, as good as possible. Then

we enter the improvement phase, where we use a metaheuristic based on local

search. For the neighbourhood, we chose to follow Shaw [19] and use a Destroy

and Repair neighbourhood, for several reasons. First, this method is very power-

ful, and yet simple to apply to our problem. Also it allows us to easily implement

several different types of destroy heuristics, and several different types of repair

heuristics, which allows us to test different methods. Also, given the nature of

the problem, which is quite constrained, our hope is that the removal and rein-

sertion of relatively large numbers of clients at once would lead to great jumps

between solutions being possible.

3.1 Initialisation Phase

For the initialisation phase of the algorithm, the aim is to construct an initial

selection of routes. These routes need to be if possible complete, ie each request

is served by a nurse, and as good as possible, all the while being calculated as

fast as possible. To this end we use a construction heuristic. In fact, any one of

the insertion heuristics presented below can be used, but we found that the best

compromise between speed and quality came from the regret insertion heuristic.

As we also used this procedure for inserting requests as a part of the Destroy

and Repair neighbourhood, we will not go into detail here. Sufficie it to say that

we create one route per nurse per day, and fill these routes with the requests

using the regret insertion procedure. This leaves us with a valid solution, which

we could then improve on.

3.2 Improvement Phase

The improvement phase is the most important part of the solution strategy. This

is where the initial solution is improved upon by means of a local search based

algorithm. For this, we chose the simulated annealing framework. The reason

for this choice is that our neighbourhood is very large scale, and quite random.

Therefore we felt that a system that allows many iterations to be made, is not too

prone to becoming trapped in a local minimum, and works well with randomised

neighbourhoods. Simulated Annealing presented all these characteristics, as well

as being very well represented in the literature.

The inspiration for Simulated Annealing comes from metallurgy, where an-

nealing is the process of heating a metal and cooling it gently, giving time for the

atoms to form into larger crystals, thereby reducing defects. In the same way,

each step of the simulated annealing method chooses a random neighbour for the

current solution (or energy state). This choice is made in such a way as to leave a

chance that a higher energy state (or worse solution) can be chosen, allowing the

method to escape local minima. This probability becomes smaller as the tem-

perature decreases as time goes on, and the method comes to resemble a simple

greedy local search. The algorithm is stopped when the temperature becomes

low enough. The temperature is decreased after a certain amount of iterations,

and the process starts anew. Simulated Annealing is considered a Monte Carlo

method because of it’s reliance on repeated random sampling.

In Algorithm 1 on the next page we present the Simulated Annealing method.

Neighbourhood

As we stated above, we have followed Shaw in using a Destroy and Repair neigh-

bourhood. More specifically, in the Simulated Annealing framework, at each it-

eration, we randomly choose an algorithm to delete requests from the solution,

and an insertion algorithm to reinsert the deleted requests into the solution. A

request pool is kept for this purpose, and also to keep track of any requests

Algorithm 1: Simulated Annealing

Input: initial solution Sinit, αinit, Tinit, Tfinal, plateau length p
Output: final solution Sfinal

T ←Tinit;
Sfinal ←Sinit;
S ←Sinit;
while T > Tfinal do

count ←0;
while count < p do

Snext ←N(S);
if Snext < S then

S ←Snext;
else

r ←Rand(0,1);

if e
−(Snext−S)

T < r then
S ←Snext;

if S < Sfinal then
Sfinal ←S;

count ←count+ 1;

return Sfinal

that might not have been inserted for some reason. In the next section, we shall

discuss which algorithms we implemented, and why.

The real power of this method lies not only in the insertion heuristics that

are chosen, but also, and maybe even more so in the procedures that are used to

partially destroy solutions. Shaw [19] goes into more detail in his paper. Mainly

the idea is that it is useful to remove requests that are related in some way. He

gives as possible examples requests that are in the ssame route, and requests

taht are geographically close to one another. In our case we have prefered not

to remove requests in the same route, because we are aiming for consistency,

and removing entire “route-loads” of requests would not advance us towards

our goal, nor would it go against any possible deficiencies in our solution. Shaw

recommends it to reduce the number of routes, whereas we have no desire to

do such a thing. In fact we would prefer there to be more routes, and therefore

more equal shifts for the nurses.

We have however placed more focus on the spatial aspect of the relatednesss

issue, as we implemented a destroy heuristic that removes requests that are

inserted in such a way as to cause a “spike”, or undue added distance in the

route.

3.3 Algorithms

Here we present the different low-level heuristics that were used to construct the

neighbourhood that was needed for the Simulated Annealing.

Inserters

Greedy Insertion The first insertion algorithm we propose, the greedy algorithm,

is also one of the simplest ones. It is presented in Algorithm 2 on the following page.

The basic idea is that of finding the best insertion position for a given request and

inserting it at that position. The algorithm, for each request, searches through

all the routes, saving the current insertion cost if it is better than the previously

saved one. When it has finished going through all the routes it inserts the request

at the saved position in the corresponding route. This algorithm, while fast, has

several drawbacks. First of all it is myopic, because it does not consider the

other requests when finding the best insertion route and position. Also because

the algorithm takes the requests in the order they come in, that order changes

the result of the algorithm. We kept it nevertheless because although myopic, it

does tend towards better solutions when included as part of an SA.

Random Insertion The second algorithm we present (see Algorithm 3 on page 17),

the random algorithm, is in fact only random when it comes to the choice of

Algorithm 2: Greedy Insertion

Input: List of routes, List of requests
Output: List of routes
foreach request re do

found ←false;
bestCost ←M ;
foreach route ro do

foreach position p do
if insertion is possible then

if cost of insertion ¡ bestCost then
bestCost ←cost of insertion;
bestPosition ←p;
bestRoute ←ro;
found ←true;

if found then
insert re into bestRoute at bestPosition;

add re to uninserted vector;

which route it inserts each request into. In other words, it chooses a random

route. It then checks the insertion cost for each position in the route, saving

the best one, and inserts the request at that position. This algorithm, although

it presents the obvious drawback of possibly choosing the worst route to insert

into, has been included because it allows the LNS to “mix up” the results a

little, changing the nature of the neighbourhood, and therefore potentially al-

lowing better results to be found. However it is not as bad as an algorithm which

would chose a random position in a random route, and so we felt it presented a

good compromise between optimisation and randomness.

Regret Insertion The third insertion algorithm, which we also use to initialise

our routes, was applied to the VRPTW in 1993 by Potvin and Rousseau [18],

although it dates back to the seventies. It is called the Regret insertion algorithm,

because it is based on the idea that instead of simply inserting at the best possible

Algorithm 3: Random Insertion

Input: List of routes, List of requests
Output: List of routes
foreach request re do

make list of possible routes;
found ←false;
while !found do

route ←select random route from possible routes;
bestCost ←M ;
foreach position p in route do

if insertion of re is possible in rooute at p then
if cost of insertion ¡ bestCost then

bestCost ←cost of insertion;
bestPosition ←p;
found ←true;

if !found then
remove route from possible routes;
if vector is empty then

add r to rejected requests;
found ←true;

else
choose new route from eligible vector;

else
insert re into route at bestPosition;

position in the best possible route, one can find out for each request, how much

one would “regret” not inserting at that position. The algorithm (presented in

simplified form in Algorithm 4 on the following page) finds for each request the

best insertion position in each route. This best insertion position is the one

that minimises the related cost, considered as an increment of the value of the

objective function. If there is no possible insertion in a route, the insertion cost

is set to an arbitrarily high value. Next the regret value is calculated, which for

a request is the difference in insertion costs between the best position and the

second best position. This, because of the impossible insertions being set to a

high cost, always gives us a positive number. The request with the highest regret

is inserted at it’s best position in the corresponding route.

In our implementation, we added a caching mechanism to this calculation.

If after a request has been inserted, there remain requests to deal with, the

insertion values for the remaining requests only change for the route that has

just had a request inserted. Therefore it is possible to cache these values, which

leads to a considerable speed up, especially when the routes are already long.

This is particularily useful in the improvement phase of the algorithm, when

only some of the requests are removed, leaving the routes partially complete.

Algorithm 4: Regret Insertion

Input: List of routes, List of requests
Output: List of routes
while requests remain do

foreach request re do
make list of eligible routes;
foreach eligible route ro do

max ←M;
foreach position p do

if cost c of insertion in ro at p is lower than max then
maxpos ←p;
max ←c;

regret for request is the second best cost minus the best cost

insert request with highest regret into best route at best position;

Deleters

Following Shaw et al [19], we have implemented several deletion heuristics that

are based on relatedeness. All of these methods take as a parameter the percent-

age of requests to remove from the solution, and all of them remove requests

until that percentage is reached.

Consistency Deletion Operator This deletion operator (see Algorithm 5) first

finds the client wich is the least consistent, ie the one which is served by the

greatest number of different nurses. Having found this client, it removes from

the routes all of the requests belonging to it. If at this point, the solution size

has been reduced by the supplied percentage, the algorithm returns the list of

removed requests, otherwise it selects the next least consistent client and starts

anew. This algorithm is obviously the most relevant to the consistency constraint.

Algorithm 5: Consistency Deletion Operator

Input: Solution s, Percentage p
Output: List of deleted requests
dl ←empty list;
while p not reached do

find least consistent client c;
get l list of requests belonging to c;
foreach request re in l do

add re to deleted list dl;
remove re from s;

return dl;

Random Deletion Operator The algorithm presented in Algorithm 6 on the following page

is mostly the same as the Consistency Deletion Operator (see Algorithm 5). How-

ever, instead of selecting the requests to remove by choosing the least consistent

client, it chooses a random client. This is in the hope that results will be more

varied, and therefore we would have a better chance of finding interesting re-

sults, even though there is the risk of removing a client whose requests are all

optimally inserted.

Algorithm 6: Random Deletion Operator

Input: Solution s, Percentage p
Output: List of deleted requests
dl ←empty list;
while p not reached do

select random client c;
get l list of requests belonging to c;
foreach request re in l do

add re to dl;
remove re from s;

return dl;

Distance Deletion Operator This last deletion operator does not consider con-

sistency, but rather routing. The idea behind it is that for a given solution, it is

advantageous to remove those requests which have a disproportionate effect on

the cost of their route. So the algorithm removes the requests with the largest

average distance from their neighbours. These requests are the ones that form

“spikes” in the routes in many cases.

Consider a request x, which is preceded by i and followed by j in the route.

The average distance from the neighbours of x is

D(i, x) +D(x, j)

2

where D(i, j) is the distance from i to j. This operator removes the specified

percentage of the most distant requests. This algorithm is presented in Algo-

rithm 7 on the facing page.

3.4 Implementation

We have implemented the above algorithms in C++. This language presents

several specific advantages which we found to be most useful in our case. First,

it is compiled, and therefore fast. Given that our simulated annealing framework

Algorithm 7: Distance Deletion Operator

Input: Solution s, Percentage p
Output: List of deleted requests
dl ←empty list;
sl ←list sorted by distance of requests from their neighbours;
foreach request re in s do

insert re into sl in a sorted manner;
if size of sl greater than p then

truncate sl;

foreach request re in sl do
add re to dl;
remove re from s;

return dl;

runs for a fixed number of iterations, the faster the language, the faster the

results are calculated. Also it allows the programmer access to object oriented

programming, a real boon given the metaheuristic and modular nature of the

method. We were able to write the framework without regard to the implemen-

tation of the routes, or the operators. Also we were able to leverage Virtual

Inheritance to great effect, both on the data importing side of the software, and

on the core functionality, like the deletion operators. As it stands, we can quickly

implement a new deletion or insertion operator without changing any code in

the SA framework.

4 Computational Results

4.1 Parameters

Simulated Annealing

The Simulated Annealing framework accepts several different parameters. The

first is the initial temperature, which effectively sets how long the method will

run. Secondly, there is the end temperature Tfinal, when the metaheuristic ex-

its. Next is the length of the plateau, which sets how long each energy state is

examined. It is important to not set this too short, so that a statistically sig-

nificant number of states can be examined. Finally there is the rate at which

the temperature decreases. This is achieved by multiplying T by α, a number

between 0 and 1.

In our tests, we initially set the temperature to 100. However over the course

of our tests, we found that it was not necessary to start so high, and we set it

to 60 instead. This afforded us with a decent exploration of the solution space,

while keeping the resolution time reasonably short. The final temperature was

set to 5 for the same reasons.

The plateau length was set to 150. Initially we started at 100, but solutions

were not improved as much as expected, so we set it to 150, which delivers better

results.

T Tfinal p α Time (seconds) Length Consistency

100 1 100 0.9 4.5 2595.1 6000
100 5 100 0.9 3.2 2900.37 6000
60 1 100 0.9 2.8 2678.78 9000
60 5 100 0.9 2.2 2827.97 7000
100 1 150 0.9 3.8 2633.07 7000
100 5 150 0.9 1.7 2668.02 7000
60 1 150 0.9 3.9 2752.75 9000
60 5 150 0.9 1.4 2910.05 9000
100 1 100 0.99 37.9 2777.13 5000
100 5 100 0.99 26 2599.18 5000
60 1 100 0.99 38.7 2698.5 5000
60 5 100 0.99 22.3 3011.19 7000
100 1 150 0.99 38.3 2628.68 7000
100 5 150 0.99 27.3 2831.47 6000
60 1 150 0.99 34 2542.05 8000
60 5 150 0.99 24.5 2603.89 7000

Fig. 1: Parameter settings comparison

Figure 1 on the preceding page shows the differences between the various

settings. For each parameter we have chosen two possible values, and run the

algorithm on the same problem, which has 12 clients, 66 requests, and 3 nurses.

The first difference that catches the eye is between the set of those runs with α

set to 0.9 and those with α set to 0.99. Alhtough the results are generally better

in the latter case, the cost in time is prohibitive, as it multiplies the run duration

by an order of magnitude.

The second interesting figure is the difference between the runs where Tfinal =

1 and those where Tfinal = 5. There is not much difference between them in the

cases where α = 0.9, except for the running time, which is larger when Tfinal

is smaller. This makes sense because at the lower end of the temperature scale,

there is a very small probability that a worse solution would be accepted in lieu

of the current one. Therefore prolonging the run at low temperatures yields little

benefit with regards to the time spent.

The most debatable parameters in this instance are the p and T values. It

seems that the solutions are slightly better when p is larger. this makes sense

because the algorithm has more time to explore the neighbouring solutions at

that state of energy, and especially while the temperature is high, can escape

a potential local minimum. In the same way a high T leads to slightly better

solution, but the effort is not always worth the payoff.

In the end we selected T = 60, and p = 150, which seemed to give a good

compromise between speed and result quality.

Destroy and Repair Neighbourhood

The last parameter is the number of requests that should be removed and rein-

serted at each step. In A general heuristic for vehicle routing problems [16],

Pisinger and Ropke recommended between 10 and 40 percent of the solution

size. We decided to use a conservative interpretation of this recommmendation,

and set the percentage to 10. Of course, given that the heuristics only stop re-

moving requests when they have removed more than the given percentage, the

actual number is often exceeded, especially on smaller instances, which is in line

with Ropke and Pisingers method, where they recommend the number should

be limited on larger instances.

4.2 Comparison to Groër et al

Results

We wrote a parser for the data proposed by Groër et al. There are two sets.

One set are small problems with 10 or 12 customers, with a schedule of 3 days,

randomly generated by Groër et al. The other are randomly generated from

the well-known Christofides instances where each customer has a probability of

p=0.7 of being visited on each of the 5 days of the schedule. All distances in both

sets are euclidian. There are no time windows, and there is at most one demand

per customer per day. In order to compare our results with those of Groër et

al, we set the time windows in each case to the whole day, and disregarded the

demand values. We also set the number of nurses to the same number as the

number of vehicles in the corresponding Groër instance.

In Figure 2 on the facing page we present the results of the comparison on

some of the larger instances from Christofides et al. The main difference that

we can see is that where Groër et al have included a consistency constraint,

we have made consistency part of the objective function. This means that the

routing values in our case are better, but some of the requests for certain clients

are served by a different nurse. Each time this happens, our objective function

is increased by 1000, which leads to the observed consistency figures. all of our

results in this table are averaged over 5 runs, however, which is why the consis-

tency values are not necessarily a multiple of 1000. This is most notable in cases

where there are a lot of requests for not many clients, for example problem 9.

But on the whole, we can see that our method finds results which are as good

as those of Groër et al. Also, and especially, our consistency values, while not

optimal in every case, are usually very good.

Problem Customers Requests Fleet size Groër travel time Length Consistency

1 50 164 5 2282.14 2147.25 1000
2 75 268 11 3872.86 2949.56 1000
3 100 337 7 3628.22 3020.53 1000
4 150 544 12 4952.91 3903.24 1750
6 50 173 5 4084.24 2347.6 1800
7 75 276 12 7126.07 3310.33 20000
9 50 534 14 11033.54 5539.74 63333.3
11 120 425 7 4753.89 3612.21 1000
12 100 325 10 3861.35 3120.27 1000

Fig. 2: Comparison to Groër et al

Graphical interpretation

In Figure 3 on page 27 we present some graphical views of the results of the

solution to the smallest of the problems proposed by Groër et al.. One can see

that the routes are not completely optimal when it comes to routing. Given that

in these instances there are no time windows, it seems easy to optimise the routes

further so that there are no more loops. However, this situation is explained

by the neighbourhood operators we have implemented. Out of three deletion

operators, only one is based on routing, and even then it removes requests that

are far away from their neighbours, with no regard to order or looping. the other

deletion operators remove requests by client, and have no concept of routing

whatsoever. When it comes to the insertion operators, they are all based on the

objective function, whcih is heavily weighted towards consistency. These two

factors taken together lead to a system which would naturally find it hard to

detect and remove loops.

The second issue that catches the eye, especially in 3(a), is the fact that

the routes are unequal when it comes to length. This means that some nurses

will have longer shifts than others. While this was never part of the original

problem, it would not be hard to solve simply by creating a deletion operator

which removed requests from the longest routes, hoping that they would then

be reassigned to a different nurse. Of course to keep consistency, the requests

would have to be removed by client also, but this should not be hard to do.

-30

-20

-10

 0

 10

 20

 30

-30 -20 -10 0 10 20 30 40

Route 0
Route 1

(a)

-30

-20

-10

 0

 10

 20

 30

-30 -20 -10 0 10 20 30 40

Route 0
Route 1
Route 2
Route 3

(b)

-40

-30

-20

-10

 0

 10

 20

 30

-30 -20 -10 0 10 20 30 40

Route 0
Route 1
Route 2

(c)

-30

-20

-10

 0

 10

 20

 30

-30 -20 -10 0 10 20 30 40

Route 0
Route 1
Route 2
Route 3

(d)

-40

-30

-20

-10

 0

 10

 20

 30

-30 -20 -10 0 10 20 30 40

Route 0
Route 1
Route 2

(e)

-40

-30

-20

-10

 0

 10

 20

 30

-30 -20 -10 0 10 20 30 40

Route 0
Route 1
Route 2
Route 3
Route 4
Route 5
Route 6
Route 7
Route 8
Route 9

Route 10
Route 11
Route 12
Route 13
Route 14
Route 15
Route 16
Route 17
Route 18
Route 19
Route 20

(f)

Fig. 3: Routing broken down by day: (a) Day 1, (b) Day 2, (c) Day 3, (d) Day
4, (e) Day 5, (f) All days

5 Conclusions

The mobile health care industry (for want of a better word), as may be guessed,

attaches great importance to the comfort of it’s patients. This can in part be

accomplished by allowing a given nurse to build a working relationship with his

or her patients. To do this, it is necessary for patients to see the same nurse as

often as possible over the course of their various treatments.

In this paper we developed a method for generating consistent mobile nurse

routes. On the generated instances, the Simulated Annealing framework we pre-

sented, based on LNS, was able to perform very well.

However, there are several ways in which this method could be improved

further. First of all the destroy and repair heuristics could, instead of being se-

lected randomly, be selected using a roulette wheel, with more weight given to

the less random or greedy algorithms. This would have the advantage of pri-

oritising better heuristics. another way to do this would be to use the adaptive

method described in the literature, where the roulette whelle is initially com-

posed of equal probabilities, but during the search gets biased towards those

pairs of heuristics that perofrm better than other pairs.

Using the flexibility of the proposed method, it would be relatively simple

to include other heuristics, such as a deletion operator which tries to remove

requests that are involved in loops within the route. Another possible deletion

heuristic is one that removes requests that belong to the same route. Overall,

any deletion operator that removes request that are related, for any definition

of related, is in all probability a welcome addition to the method.

With regards to the method itself, we have presented an implementation of a

very well-respected metaheuristic framework applied to a new class of problem.

Our implementation has stood up to the test of the data instances generated by

Groër et al, and therefore we feel that the results are satisfactory.

Bibliography

[1] Balinski, M. and Quandt, R. (1964). On an integer program for a delivery
problem. Operations Research, 12(2):300–304.

[2] Begur, S. V., Miller, D. M., and Weaver, J. R. (1997). An integrated spa-
tial dss for scheduling and routing home-health-care nurses. INTERFACES,
27(4):35–48.

[3] Bertels, S. and Fahle, T. (2006). A hybrid setup for a hybrid scenario: com-
bining heuristics for the home health care problem. Computers and Operations
Research, 33(10):2866–2890.

[4] Clarke, G. and Wright, J. (1964). Scheduling of vehicles from a central depot
to a number of delivery points. Operations research, 12(4):568–581.

[5] Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem.
Management Science, 6(1):80–91.

[6] Eveborn, P., Flisberg, P., and Rönnqvist, M. (2006). Laps. European Journal
of Operational Research, 171(3):962–976.

[7] Eveborn, P., Rönnqvist, M., Einarsdóttir, H., Eklund, M., Lidén, K., and
Almroth, M. (2009). Operations research improves quality and efficiency in
home care. Interfaces, 39(1):18–34.

[8] Fisher, M. and Jaikumar, R. (1981). A generalized assignment heuristic for
vehicle routing. Networks, 11(2):109–124.

[9] Gillett, B. E. and Miller, L. R. (1974). A Heuristic Algorithm for the Vehicle-
Dispatch Problem. OPERATIONS RESEARCH, 22(2):340–349.

[10] Glover, F. (1977). Heuristics for integer programming using surrogate con-
straints. Decision Sciences, 8(1):156–166.

[11] Groër, C., Golden, B. L., and Wasil, E. A. (2009). The consistent ve-
hicle routing problem. Manufacturing & Service Operations Management,
11(4):630–643.

[12] Kindervater, G. and Savelsbergh, M. (1997). Vehicle routing: Handling edge
exchanges. Local Search in Combinatorial Optimization, pages 337–360.

[13] Li, F., Golden, B., and Wasil, E. (2005). Very large-scale vehicle routing:
new test problems, algorithms, and results. Computers & Operations Research,
32(5):1165–1179.

[14] Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell
System Technical Journal, 44(10):2245–2269.

[15] Lin, S. and Kernighan, B. (1973). An effective heuristic algorithm for the
traveling-salesman problem. Operations research, 21(2):498–516.

[16] Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing
problems. Computers & OR, 34(8):2403–2435.

[17] Pisinger, D. and Ropke, S. (2009). Handbook of Metaheuristics, 2nd edition.
none. (to appear).

[18] Potvin, J.-Y. and Rousseau, J.-M. (1993). A parallel route building al-
gorithm for the vehicle routing and scheduling problem with time windows.
European Journal of Operational Research, 66(3):331 – 340.

[19] Shaw, P. (1998). Using constraint programming and local search meth-
ods to solve vehicle routing problems. Principles and Practice of Constraint
Programming—CP98, pages 417–431.

[20] Thompson, P. and Psaraftis, H. (1993). Cyclic transfer algorithms for multi-
vehicle routing and scheduling problems. Operations Research, 41(5):935–946.

[21] Van Breedam, A. (1994). An analysis of the behavior of heuristics for the ve-
hicle routing problem for a selection of problems with vehicle-related, customer-
related, and time-related constraints. PhD thesis, University of Antwerp.

[22] Willard, A. (1989). Vehicle routing using r-optimal tabu search. Master’s
thesis, The Management School, Imperial College, London.

[23] Xu, J. and Kelly, J. (1996). A network flow-based tabu search heuristic for
the vehicle routing problem. Transportation Science, 30(4):379.

